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Abstract: This paper deals with a predictive control and estimation problem with information structured constraints
in a constrained finite-time optimal control framework. A large-scale system with information structures is defined as a
system in which each subsystem collects spatio-temporally different information, and in general it is necessary to collect
and process information in a distributed fashion. We propose a novel predictive control scheme and an estimation law
with local information that each distributed subsystem obtains. The effectiveness of the proposed control and estimation
law is evaluated through numerical simulations of a simplified micro grid.
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1. INTRODUCTION

Information structured systems consist of multiple
sub-systems collecting distributed spatio-temporally dif-
ferent information. Such systems had been extensively
studied in the 1970s, and a variety of control methodolo-
gies were also proposed and discussed (see [1]).

These systems with information structures receive a
lot of attention again (see [2], [3], [4], [5]) in recent years
due to the growing interests in new environmental and
energy technologies such as smart grid, micro grid, sen-
sor networks, and so on. For example, it is required in the
smart grid ( Fig. 1) that different power generators (photo-
voltaic generator, wind farm, fuel cell, micro gas turbine
and so on) and power storages cooperate in energetically
and environmentally optimal fashion.

Note that this research subject is also closely related to
cooperative control theory which has attracted attention
over the years in systems and control society. Among
numerous research works on systems with information
structures, our focus is on the distributed optimal control
and estimation approach ([6], [7], [8], [9]. [10], [11]). Es-
pecially, we focus on the work due to [4], where the infor-
mation structures are modelled by covariance constraints
and a stationary LQG control law is presented based on
the model. A finite and infinite time LQG control with
covariance constraints is also proposed in [5].

Though the present control method might be useful
for another objective, this work is basically motivated by
the aforementioned network connected micro grid / smart
grid, where it is required to satisfy input and state con-
straints the system inherently possesses and to use infor-
mation available on-line such as weather forecast[12].

The main objective of this paper is thus to propose a
novel predictive control scheme, which is known to be a
useful control methodology in order to meet the above re-
quirements, for systems with information structured con-
straints. We first present a predictive control scheme for
a finite-time optimal control problem. Then, we prove
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that the constrained finite-time optimal control problem
can be reduced to a deterministic convex programming
problem. We moreover present an estimation scheme for
systems with information structure based on the works
due to Rantzer [13].

Finally the effectiveness of the proposed control and
estimation law is shown via a numerical simulation of a
simplified micro grid model.

The following notations are used in this paper. Z, is
the non-negative integer set, R" is the n-dimensional real
space, Rl is the n-dimensional non-negative real space,
R™" is the m X n-dimensional real space, E is an ex-
pectation operator, @ > 0(Q > 0) means that Q is a
positive(non-negative) matrix, and Tr is a trace operator.

2. SYSTEM DESCRIPTION

Consider the following discrete-time linear time in-
variant system,

x(t+1)
y(®)
where t € Z,, x(t) € R™ is the state, u(r) € R™ is the

control input, y(¢) € R™ is the measurement, w(t) € R™
and v(r) € R™ are respectively zero mean white process

Ax(t) + Bu(t) + Fw(t), (la)
Cx(®) + (1), (1b)



and sensor noises. The system (1) is assumed to be con-
trollable and observable, and satisfies

E[Vv”g))] W) vT(s>]=[Rg;W RO] b @

61_§-=1if[=S, 61S=0 1ft¢s,
Ew@®x'(s)=0, EviDx'(s)=0 if r>s. (3)

A system with information structures where each sub-
system collects spatio-temporally different information is
considered. Thus, the information available for control
and estimation differs from subsystems to other subsys-
tems, which should be included into the system model
(1). Here we assume that information propagates through
the communication channels at least as fast as it propa-
gates through the plant itself (funnel causality[3] or par-
tially nested information structure[1]). Then, it is known
that the difference can be represented by communication

delays between subsystems as exemplified below.
We consider a micro grid system with Grid 1-3 in Fig.
2 which is represented by

21 En 0 1|z1(0) = Zief(’)
= l521 En 523] 20 -2 (1)

0 =2 Esllaon-ZYo

a+) -7 @+ 1)
a+1) -7 @+ 1)
s+ ) -2+

w®] w0 [Aa@-27 e+
+ 1) | + | wa0| + |Az2() - 25 (1 + 1) (4a)
s (] w31 |Azz(r) - def (t+1)
wol [a0-270] o
[\'2(’)] =t -7 0|+ Vz(r)], (4b)
3O za0 -2 0] 1)

where z;(7) is the total power of the i-th subsystem, u;(7) is

the power generated by the i-th micro gas turbine, Az; () is
by the i-th photo-voltaic generator, z;ef (7) is the desirable
power of i-th subsystem, and w;(¢), v;(f) are zero mean
white noises. In this example, we assume that it takes 1
time step for information to be passed from a subsystem
to neighbors.

Note that the power Az;(¢) by the photo-voltaic gen-
erator is uncontrollable, whereas u;(r) by the micro gas
turbine is controllable. However, it is possible to gain the
predictive information on zlfef (#) and Az;(7) over a certain
finite future time interval at each time instant by energy
demands forecasting[14].

Throughout this paper, we employ this system for ease
of explanation under the assumption of Z;“’f () = Azi(t) =
0 Vt € Z,. Under the above simplifications, we get a
simple model represented as

a+1) [En E2 0 |[a®
2+ D) = |20 Zn Za||20)
z(t+ 1) | 0 H3 Hs3]|z3(0)
[y ()| [wi(D)
+ ua(t)| + |wa(0)]. (5)
lus(D] w3 (D)

Note that all of the following statements hold true
without this assumption if the models of z;“’f and Az; are
available. However, in practical situations, such models
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are not obtained and only numerical data is available on-
line. Predictive control we handle in this paper allows us
to include such future information available on-line into
the control problem easily. This will be demonstrated in
Section 4 through numerical simulation results.

It is well-known that one can model information struc-
tures by using the covariance constraints for general sys-
tems. The constraints can be generally described by

E wi(hwj(t—7) =0 if 7 < dist(i, ), (6)

where T € Z,, dist(i, j) is the distance between subsystem
i and subsystem j. Thus, the model (1a) with covariance
constraints (5) can be employed in control problems of
systems with information structures.

We next derive a model used for state estimation. The
information structures of the other subsystems can be de-
scribed by covariance constraints. In a general case, the
covariance constraints can be represented as

E (vt —1) =0 if 7<dist(i, j) - 1. (7)

The micro grid in general have a variety of input and
state constraints. We thus include two kinds of con-
straints into the system description: The first one is the
power constraints represented by covariance constraints.

Ex"(0Q0:x() +u' 0Quu) < v, 0., Q>0 (8)

The second one is the mean polytopic constraints repre-
sented by

x(t) ny+ny,
E[u(t)]EDCR , ©))
where D is a convex polytope including the origin as an
interior. In summary, the system model under considera-
tion is given by (1) with constraints (5), (6), (7) and (8).

3. PREDICTIVE CONTROL FOR
SYSTEMS WITH INFORMATION
STRUCTURED CONSTRAINTS

3.1 Constrained Finite-Time Optimal Control prob-
lem

In this section, we propose a state feedback predic-
tive control law i.e. C = [ and v = O for systems with



information structures. For this purpose, we first con-
sider the following constrained finite-time optimal con-
trol (CFTOC) problem.

Problem 1:

min E {XT(N(,')PN(.X(NC)

u(0),+ ,u(N-~1)
DI [x0)
¥ Z [u(;)] [u(j)]} (102)

subject to
x(k + 1) = Ax(k) + Bu(k) + Fw(k), x(0) = yo
x| - [xk)

E <e, j=12.....m (10b)

v Q=[%“ 0} (100

| 9 [u(k)
T [xac)

_I/l(k)- (k) Qu

[ x(k)| ntn,
E ) eDCR (10d)
E x(N,) € F. (10e)

Q = H'H > 0 and Q, are symmetric matrices. Note
that x(0) is a probability variable with mean yo and vari-
ance R,,. (9b) represents the covariance constraint intro-
duced by the information structures, where we relax the
constraint by inserting a sufficiently small parameters €;.
The constraint (9¢) describes the power constraints (7)
and (9d) describes mean constraints (8) on states and in-
puts, ¥ is a terminal constraint set, where

N 1 S

The present control law determines the control input ac-
cording to the receding horizon control policy, i.e. the
above problem with the initial state yp = x(¢) is solved,
the first one of the computed control moves is imple-
mented and then the optimal control problem is newly
solved at the next step with the horizon shifted forward
by one time instant. In the following, the numbers of lin-
ear constraints in (9d) and (9e) are denoted by Np and Np
respectively.

3.2 Solution to CFTOC

In this subsection, we present a solution to Problem 1.
In terms of this issue, we have the following theorem.
Theorem 1: Problem 1 is reduced to the following
deterministic optimization problem.
Problem 2:

miln s subject to >0. (12)

N +s
The definitions of ®, ¥ and 7 are given in the proof.
Proof: First, we define

[ ) PO

U = [u"©) u"(1) W' (Ne - 1]

W) = [w! () w(1) W N~ D'
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Then, as well known, x(k), k € [0, N.] is described by the
form of

X() = DUO) + ¥ V’“V((OO))} (13)
where

0 = [A1B B 0 0],

W= AR ARLF F 0 0]

Substituting (12) to Problem 1 yields the following
optimization problem

Problem 3:
%r)l E f(U(0), W(0), x(0)) (14a)
subject to
Eh;(U(0), W(0), x(0)) < 0, (14b)

i=1,--,m k=0, N,
E g/(U(0), W(0),x(0)) <0, I=0,--- ,Ny, (l4c)
Ny = NC(ND+ l)+N1-‘.

where

FU(0), W(0), x(0)) = U (0)U(0)

x(0)| [ x(0) TF x(0)
wo)| T |lwo)| * [wo)

hix(U(0), W(0), x(0)) = UT(O)H“kU 0)
ux | X(0) x(0) [ . | X(0)
+U" (O HY [W(O)] + [W(O)] H, [W(O)}
- (15)
g(U(0), W(0), x(0)) = U (O)GU(0)

.
LU 0)G [ X(0) } N [ X(0) } Gr [ x(0) } .

+UT ()WY [ +

W(©)| |W(0) W(0)
[=0,---,N, (16)
21U (0), W(0), x(0)) =
b R ORY

I=Ne+1,--- Ny (17)

The constraints (14), (15) and (16) respectively corre-
spond to the constraints (9b), (9¢), and (9d), (9¢) in Prob-
lem 1.



The matrices in the above equations are defined by

N.-1

O = Z O] POy + Y, PyDy,
k=0
N.—1
Y= Z WP, + P Py,
k=0
N.—1
r:=2 Z O] PY + 20%, Py¥y,
k=0

HY, = ®[ Qi Hi ik = 2¥[ 00, HY, = ¥Y[ 0V,
i=1,-,mk=0,--- N,

G} =/ Q¥;, G, =2¥] 0¥, G} =¥/ QY¥,,
l = Ov ) NCv
Mpd, Mp¥
AM — A,\‘ =
Mp®y,_ Mp¥y,
Mp®y, Mp\¥y,

and Ay and A} denotes I-th lows of A, and A, respectively.
Let us now define the Lagrange function

m N,
LU©),) =Ef+ Z Z AW +1)(i= Dk 1 Ehig
i=1 k=0
M
+ Z Airremv+1)Eg1,
=0
with the  Lagrange  multipliers A =

We assume that all the ele-
More specifically, the

(A1 s AN+ 1) +Ny+1)-
ments of A are nonnegative.
function is equivalent to

L(U(0), ) = EUT ()W) U0) + EZ (D) U(0)
+En(), (18)

where

m N¢
D) =D + Z Z AN +1) - Dk 1 H G + Z At 14mNe+ 1) GY 5
i=1 k=0
m Ne x(O)
P =+ Z Z AN+ =1+ 1 [W(O)] Hiy
i=1 k=0
Ne Ny

+ Z A tom(Ner DAYy,
[=N¢+1

x(0) m N

.
_ & | X0 . .
) = [W(O) ) [W(O) - ;;A(Nﬁl)(hlnkuﬁ

x(0) 1)
W(0)

+ Z AL+ 1+m(Ne+1)
=0

x(0) ux
W(O)] Gi

Ny

Ne
—7211+1+muv1.+1)+ Z AL+ 14+m(Ne+1) (A, Ne
=0 =Ne+1

m N¢

Fy =T+ Z Z AN+ 1) -Dyrke 1 H + Z Atr14mNe+ )G
i=1 k=0

Then, we also define 0(U(0)) = sup,.o L(U(0), 1) and
w(d) = infye L(U(0),1). Note that the problem of
infy ) O(U(0)) is the same as Problem 3. The dual prob-
lem of the problem is represented by sup ;5 w(4).

In the following, we attempt to solve the dual prob-
lem sup;.ow(Ad). For this purpose, we first consider
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w(A) = infy ) L(U(0), A). From optimality conditions of
infy0) L(U(0), ), for any optimal solution U, we get

2000 + EP(1) =0

nagnely U = —dHD)E¥(1)/2 holds true. Notice that
EY(Q) is given by

EP\) =
m N¢
Z Z AN+ 1) -1k 1 HG + Z /11+1+muv£+1)(!“‘] [y(;)]
i=1 k=0 =0
Nu
+ Z A temNe+ DALy, (19)
I=Ne+1

For no}ational simplicity, we define ‘I’(il) = EPW)/2.
Then, U is represented by U = —~®~1(1)P(1). Hence, we
have

w) = l% L(U(0), 1) = L(U, )

= (@ <A)@<A))T@<A) 28 ()@ (D)P) + En(2)
= —‘{’(/I)CD (A)‘P(/l) + En(Q).
Notice that En(/l) (denoted by 7(1)) is given by

m_ Ne

_ x0) [ = x(0)
) =E [W(O) T o]~ Z:‘ gﬂ(mu)(z‘—mkuﬂ
i1 ke
Ne Ny x(0)
_72 Al Lem(No+1) + Z AL+ Lem(No+1) (A;C,N(.E wo)| ~ l)
1=0 [=Nc+1
N,
- + 2R, She
= Trl(1) Yo¥0 v ] Z Z AW+ 1) (i~ 1)+h+1€i
i=1 k=0
—'}’Z AL 1+m(No+1) + Z At L4m(Ne+1) (A;iNcE y(;)] - 1)
[=No+1

In summary, w(4) is given by
W) = =POO V)P + (1),

which is deterministic. By letting s be an upper bound
of —w(A) and using Schur Complement [15], the problem
Sup 159 W(4) is reduced to the problem (11). This com-
pletes the proof. |
Note that since @ and ¥ are linear in terms of A, Prob-
lem 2 is a linear matrix inequality (LMI) optimization
problem, which is solvable by some existing solvers.

3.3 Estimation for Systems with Information Struc-
ture

In the previous subsection, we presented a state feed-
back predictive control law for systems with information
structures. However, it is difficult to apply it to practical
systems because the augmented systems usually include
the disturbances as state variables. In this section, we
thus present a state estimation scheme for systems with
information structure.

Here we employ a moving horizon estimator [16] with
variance minimization for state estimation in order to get
a state estimate & (k). In terms of this issue, if we employ
the variance minimization for state estimation the objec-
tive function to be minimized is given by

Ne
E Z(y(t —i) = C&(t = 1)) Qu(y(r = i) — C&(r — ). (20)
i=0



By using the same procedure as the previous subsection
the minimization problem of (19) under the communica-
tion delay constraint (6) is also reduced to an LMI prob-
lem and it can be solved in a distributed fashion via dual
decomposition techniques. Hence, we can implement an
output feedback predictive control scheme at least ac-
cording to the certainly equivalence principle. Though
we guess that separation principle holds for the control
and estimation in the absence of power and mean con-
straints, its theoretical investigations are one of future
works of this paper. The separation principal in the pres-
ence of constraints does not hold and analysis on the in-
tegrated system is also left as a future work.

4. EVALUATION VIA CONTROL OF
MICRO GRID

4.1 Dynamics of Micro Grid

The reference [4] presented a modeling method where
the communication delays are represented by covariance
constraints. Consider a micro grid system connected each
other in Fig.2. Then, the available information Z;(z) of i-
th subsystem at time 7 for determining () is:

Z1(0) = @0, 2200 - 1), 2301 = 2)),

Zo() = (1t = 1), 22(0), z3(t = 1)), 2n
Z5() = (1 (1 =2), 220t = 1), 23(1)),
where 7;(t) = (z;(0), z(t-1), ---, z(0)), i = 1,2,3.

Equations in (20) are rewritten as

Zi(®) = @t = 2), w1t = D), w1t = 2), wa(1 = 2)),
Zo(®) = (2t = 2), w1t = 2), wa(t = 1), wa (1 = 2),

,w3(t = 2)) 22)
Z3(1) = (1 = 2), walr = 2), w3(r = 1), w3(t = 2)),
where zZ(1) = (z(1), z(t=1), -+, 2(0)) and z(r) :=

[z1(0) z2(t) z3(D)]". The above equations mean that com-
munication delays of (5) are reduced to delays of distur-
bances. Thus, communication delays can be represented
by the following covariance constraints between inputs
and disturbances [4].

Eu(twat—1) =0 Euw(ws(t—-1)=0
Euw(twst—1)=0 Eus(wi(t—1)=0
Eu(tws(t-2)=0 Eus()wi(t-2)=0
Ew@wit-1)=0 Eus(w(t-1)=0 (23)

If we define the vectors

u@) = [u() wa @ uz(0)]’,
w®) = [wi(t) wa() w01,
x@) = [owe-Dwe-2)1",

we have the augmented state equation with the same form
as (la), where

Z 0 0 1 1
A:=|0 0 0| B:=|0| F:=|1
0 7 O 0 0
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Namely, state evolutions of the micro grid system are
modeled by (1a) with covariance constraints (22).

We next derive a model used for state estimation. Note
that though we ignore the control input u(¢), all of the
following statements are also true in the presence of u(f)
as long as it satisfies (22). Under the simplification of
z;‘)f () = Az;(t) = 0Vt € Z,, the output equation is given

by
y1(0) z(@f @
@O =|z@]+]|v0)]. (24a)
y3(0) (O] |v3(@

Let us now denote by Y;(¢) available measurement infor-
mation of subsystem Grid i at time 7. Then, Y,(¢) is given
by

Y1) = (10, 21 — 1), y3(t = 2)),

Yo(0) = 51t = 1), 5200, y3(t = 1)), (25)
Y3(1) = (511 = 2), 522 = 1), ¥3(0)),
where ¥;(7) := (yi(#), yi(t — 1), ---, vi(0)). Equation (24)
is replaced by

Y1) = (3 = 2), 310, y1(t = 1), y2(r = 1)),
Ya(1) = (5 = 1), y2(0)), (26)

Y3(1) = (2 = 2), y2(t = 1), y3(0), y3( = 1)),
where y(r) = (@, yt-1), ---, y(0)) and y(@©) :=
010, y2(1), y3(1)).

This means that available information is different from
subsystem to subsystem due to the communication de-
lays. Similarly to the previous subsection, the difference
of available measurements is reduced to that of informa-
tion on the noises v(s), s < t. For example, subsystem :
Grid 1 has the following covariance constraints.

E y1(1)v3 (1) =0,
E y1()v (1) =0, (27
Eyi(t-1vje-1)=0. (28)

4.2 Simulation Results

Finally the micro grid system has been represented as
same with the Problem | and the predictive output control
law in the Section 3 can be applied to the system.

In this section, we demonstrate the effectiveness of the
present control law through the system in Fig.2 with &;; =
0.3Vi,je {1,2,3}. Let the parameters be Q = I, P, =
I, N, =2.

In order to compute the power by photo-voltaic gener-
ators, the data of daylight at Tokyo on 30th August, 2008
is employed (See Fig. 3 (d)). We also let the reference
power P;'ef be the power consumption pattern [14].

It can be seen from Fig. 3 that the states are suc-
cessfully estimated and our predictive control scheme
achieves a good tracking of z;(7) to the reference z;‘ef ().
This simulation demonstrates the effectiveness of the
present control scheme.
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Fig. 3 Simulation Results

5. CONCLUSION

This paper has dealt with a predictive control scheme
for systems with information structures.

First, we have proposed a predictive control scheme
for a finite-time optimal control problem. Then, we have
proved that the constrained finite-time optimal control
problem is reduced to a deterministic convex program-
ming problem which means that the optimal control prob-
lem can be solved efficiently.

Furthermore an estimation scheme for systems with
information structure has been presented. In order to for-
mulate the constrained finite-time optimal control prob-
lem, we have used the modeling method due to [4], where
the information structures are described by covariance
constraints.

Finally the effectiveness of the proposed control law
and the estimator have been demonstrated through a nu-
merical simulation of a simplified micro grid.
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