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Abstract: This paper deals with a decentralized control of smart grid by using overlapping information for load frequency
of power networks introducing distributed power generations. The control objective is to minimize the cost function of
load frequency control problem. We expand the state space of the system of power networks and propose a decentralized
state feedback control of subsystems for the expanded system. Then we contract the decentralized feedback law to match
the original system. Finally, we show the effectiveness of the load frequency control by using the proposed decentralized
control method through the simulation result of decentralized large scale power network systems.
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1. INTRODUCTION

The decision making problems for using different in-
formation concerning underlying uncertainties has been
studied since the 1950’s. Some of typical problems in
these fields are called as game problem and team prob-
lem and so on. In the 1970’s/1980’s, relations with the
decentralized control and decision making was strength-
ened and information structured systems that have mul-
tiple subsystems getting different information had been
actively studied. Also decentralized control methodolo-
gies were proposed and discussed such as [1, 2].

In recent years, decentralized control methodologies
to apply these systems receive large attention again [3-
6]. This is because new environmental and energy tech-
nologies for new electric power systems that is called
”smart grid” (Fig. 1) where different power generators
and power storages cooperate in energetically and envi-
ronmentally optimal way are required. Energy problems
and global warming have become the hottest problems
in the world. Therefore distributed generations such as
wind power generations, the battery systems, are going
to be installed in electric power systems to save energy
resources. However, it is difficult to control all of these
distributed generations by one operation system and some
distributed generations have bad effects on system fre-
quency and fluctuation of voltage. Hence, it is necessary
to operate these generations in a decentralized, coordi-
nated and safe way. The number of studies for smart grid
is increasing (see [7]), and decentralized control method-
ologies are also studied extensively. The optimal central-
ized control of an old electric power system was deeply
studied in 1970’s[8]. Recently, system frequency control
in an new power networks installing wind power genera-
tions, battery energy storage system has been studied by
[9] and a distributed control methodology for such system
is proposed by [10].

In this paper, we propose a decentralized control of
smart grid with information structure constraints by us-
ing overlapping information for load frequency of power
networks introducing distributed power generations. We
expand the state space of the system of power networks,
propose a decentralized state feedback control of sub-

systems and contract the decentralized feedback law to
match the original system. Then, we simulate decentral-
ized large scale power network systems, and show the
effectiveness of the load frequency control using the pro-
posed decentralized control method by the simulation re-
sult.

Fig. 1 smart grid

The following notations are used in this paper. ℤ+ is
the nonnegative integer set, ℝ𝑛 shows the real space of
the n-dimension, ℝ𝑚×𝑛 shows the real space of the m×
n-dimension, 𝑋𝑖𝑗 shows the (𝑖, 𝑗)th sub-matrix of a ma-
trix𝑋 , 𝐼𝑛 shows the unit matrix of the n× n-dimension, E
is an expectation operator, and 𝑅𝑖𝑐(𝐴,𝐵,𝑄,𝑅, 𝑃,𝐾) is
a set of matrices related to discrete-time algebraic Riccati
equation.

2. PROBLEM FORMULATION

We consider electric power networks 𝑆 with two sub-
systems. The overall dynamics of electric power net-
works is given by the

𝑆 : 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) +𝐵𝑢(𝑘) +𝐻𝑤(𝑘) (1)

where 𝑘 ∈ ℤ+, 𝑥 ∈ ℝ
𝑛 is the state, 𝑢 ∈ ℝ

𝑚 is the input,
𝑤 ∈ ℝ

𝑙 is the white noise with variance 𝑊 . 𝑥 consists
of 𝑥1 ∈ ℝ

𝑛1, 𝑥2 ∈ ℝ
𝑛2, 𝑥3 ∈ ℝ

𝑛3, 𝑢 is composed of
𝑢1 ∈ ℝ

𝑚1 , 𝑢2 ∈ ℝ
𝑚2 , 𝑤 consists of 𝑤1 ∈ ℝ

𝑙1, 𝑤2 ∈
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ℝ
𝑙2. Relation of these is represented as

𝑥 = [𝑥𝑇1 , 𝑥
𝑇
2 , 𝑥

𝑇
3 ]

𝑇 , 𝑛 = 𝑛1 + 𝑛2 + 𝑛3, (2)

𝑢 = [𝑢𝑇1 , 𝑢
𝑇
2 ]

𝑇 , 𝑚 = 𝑚1 +𝑚2, (3)

𝑤 = [𝑤𝑇
1 , 𝑤

𝑇
2 ]

𝑇 , 𝑙 = 𝑙1 + 𝑙2. (4)

In this assumption, the state of power subsystem 1 is
𝑥1, the state of power subsystem 2 is 𝑥3, and the interac-
tion state between two subsystems is 𝑥2. 𝑢1 is the input
for subsystem 1, and 𝑢2 is the input for subsystem 2.

The matrices,𝐴 ∈ ℝ
𝑛×𝑛 ,𝐵 ∈ ℝ

𝑛×𝑚, and𝐻 ∈ ℝ
𝑛×𝑙

are represented as

𝐴 =

⎡
⎣ 𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

⎤
⎦ ,

𝐵 =

⎡
⎣ 𝐵11 𝐵12

𝐵21 𝐵22

𝐵31 𝐵32

⎤
⎦ , 𝐻 =

⎡
⎣ 𝐻11 𝐻12

𝐻21 𝐻22

𝐻31 𝐻32

⎤
⎦ . (5)

We assume the situation like Fig. 2 where power subsys-
tem 1 can measure state 𝑥1, 𝑥2, and power subsystem 2
can measure state 𝑥1, 𝑥2, 𝑥3. For this system, we con-
sider a decentralized feedback control law where subsys-
tem 1 decides the input 𝑢1 from 𝑥1, 𝑥2 and subsystem 2
decides the input 𝑢2 from 𝑥1, 𝑥2, 𝑥3.

�� �� ��

�� ��

�� ��

Fig. 2 Electric Power System

The part of the input dealing with the state directly, 𝑢𝑥(𝑘)
has the following structure.

𝑢𝑥(𝑘) = −𝐾
⎡
⎣ 𝑥1(𝑘)𝑥2(𝑘)
𝑥3(𝑘)

⎤
⎦ , (6)

where𝐾 is shown as Eq. (7).

𝐾 =

[
𝐾11 𝐾12 0
𝐾21 𝐾22 𝐾23

]
(7)

Here, the following performance index is defined as

𝐽(𝑥0, 𝑢) = 𝐸[

∞∑
𝑘=0

(𝑥𝑇𝑄𝑥+ 𝑢𝑇𝑅𝑢)], (8)

where 𝑥0 is the initial state of the system 𝑆,𝑄 ∈ ℝ
𝑛×𝑛 is

a constant positive-semidefinite matrix, and 𝑅 ∈ ℝ
𝑚×𝑚

is a constant positive-definite matrix. 𝑄 and 𝑅 are ex-
pressed by using 𝑄1 ∈ ℝ

𝑛1×𝑛1, 𝑄2 ∈ ℝ
𝑛2×𝑛2, 𝑄3 ∈

ℝ
𝑛3×𝑛3, 𝑅1 ∈ ℝ

𝑚1×𝑚1, 𝑅2 ∈ ℝ
𝑚2×𝑚2 as

𝑄 = diag{𝑄1, 𝑄2, 𝑄3}, 𝑅 = diag{𝑅1, 𝑅2}. (9)

We consider a feedback control to minimize Eq. (8) in
this situation.

3. PROPOSED DECENTRALIZED
CONTROL

3.1 Expansion of the state space of the system
To set up a decentralized feedback control law, we de-

compose the state 𝑥 into two overlapping components,
and expand the system 𝑆.

𝑆 : �̃�(𝑘 + 1) = 𝐴�̃�(𝑘) + �̃�𝑢(𝑘) + �̃�𝑤(𝑘) (10)

where �̃� ∈ ℝ
�̃� is composed of �̃�1 = [𝑥𝑇1 , 𝑥

𝑇
2 ]

𝑇 and �̃�2 =
[𝑥𝑇2 , 𝑥

𝑇
3 ]

𝑇 , �̃�0 is the initial state of the system 𝑆, 𝐴 ∈
ℝ

�̃�×�̃�, �̃� ∈ ℝ
�̃�×𝑚 , �̃� ∈ ℝ

�̃�×𝑙 are constant matrices,
and �̃� satisfies �̃� = 𝑛1 + 2𝑛2 + 𝑛3.
We also expand performance index 𝐽 as follows.

𝐽(�̃�0, 𝑢) = 𝐸[

∞∑
𝑘=0

(�̃�𝑇 �̃��̃�+ 𝑢𝑇 �̃�𝑢)] (11)

where �̃�0 is the initial state of the system 𝑆, �̃� ∈ ℝ
�̃�×�̃� is

a constant positive-semidefinite matrix, and �̃� ∈ ℝ
𝑚×𝑚

is a constant positive-definite matrix. �̃� and �̃� are
expressed by using �̃�1 ∈ ℝ

(𝑛1+𝑛2)×(𝑛1+𝑛2), �̃�2 ∈
ℝ

(𝑛2+𝑛3)×(𝑛2+𝑛3), �̃�1 ∈ ℝ
𝑚1×𝑚1, �̃�2 ∈ ℝ

𝑚2×𝑚2 as

�̃� = diag{�̃�1, �̃�2}, �̃� = diag{�̃�1, �̃�2}. (12)

Here, we introduce a linear transformation 𝑉 and 𝑈 .

𝑉 : ℝ𝑛 → ℝ
�̃�, 𝑟𝑎𝑛𝑘(𝑉 ) = 𝑛 (13)

𝑈 : ℝ�̃� → ℝ
𝑛, 𝑟𝑎𝑛𝑘(𝑈) = 𝑛 (14)

These matrices satisfy 𝑈𝑉 = 𝐼𝑛. We relate (𝑆, 𝐽) and
(𝑆, 𝐽) by the following definition.

Definition 1: The pair (𝑆, 𝐽) includes the pair
(𝑆, 𝐽) if there exists a matrix 𝑉 such that �̃�0 = 𝑉 𝑥0 and
following two equations are satisfied for any input 𝑢(𝑡).

𝑥(𝑘;𝑥0, 𝑢) = 𝑈�̃�(𝑘; �̃�0, 𝑢), for all 𝑘 ≥ 0 (15)
𝐽(𝑥0, 𝑢) = 𝐽(𝑥0, 𝑢) (16)

If (𝑆, 𝐽) includes (𝑆, 𝐽), then we say that (𝑆, 𝐽) is an
expansion of (𝑆, 𝐽), and (𝑆, 𝐽) is a contraction of (𝑆, 𝐽).

We relate the matrices of (𝑆, 𝐽) and (𝑆, 𝐽) by us-
ing proper dimensions matrices 𝑀,𝑁,𝑁𝐻 ,𝑀𝑄, 𝑁𝑅 as
𝐴 = 𝑉 𝐴𝑈 +𝑀, �̃� = 𝑉 𝐵 +𝑁, �̃� = 𝑉 𝐻 +𝑁𝐻 , �̃� =
𝑈𝑇𝑄𝑈 +𝑀𝑄, �̃� = 𝑅 + 𝑁𝑅. With this representation,
the condition for the inclusion is given by the following
theorem.

Theorem 1: The pair (𝑆, 𝐽) includes The pair
(𝑆, 𝐽) if either
(i)

𝑀𝑉 = 0, 𝑁 = 0, 𝑁𝐻 = 0, (17)

𝑉 𝑇𝑀𝑄𝑉 = 0, 𝑁𝑅 = 0 (18)
or
(ii) for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , �̃�
𝑈𝑀 𝑖𝑉 = 0, 𝑈𝑀 𝑖−1𝑁 = 0, 𝑈𝑀 𝑖−1𝑁𝐻 = 0, (19)

𝑀𝑄𝑀
𝑖−1𝑉 = 0,𝑀𝑄𝑀

𝑖−1𝑁 = 0, 𝑁𝑅 = 0. (20)

Proof: The theorem can be proven based on [2].
We choose matrices which satisfies (i) of this theorem as

𝑉 =

⎡
⎢⎣

𝐼𝑛1 0 0
0 𝐼𝑛2 0
0 𝐼𝑛2 0
0 0 𝐼𝑛3

⎤
⎥⎦ , 𝑈 =

⎡
⎣ 𝐼𝑛1 0 0 0

0 1
2
𝐼𝑛2

1
2
𝐼𝑛2 0

0 0 0 𝐼𝑛3

⎤
⎦ ,
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𝑁 = 0, 𝑁𝐻 = 0, 𝑀 =

⎡
⎢⎢⎣

0 1
2
𝐴12 − 1

2
𝐴12 0

0 1
2
𝐴22 − 1

2
𝐴22 0

0 − 1
2
𝐴22

1
2
𝐴22 0

0 − 1
2
𝐴32

1
2
𝐴32 0

⎤
⎥⎥⎦ ,

𝑁𝑅 = 0, 𝑀𝑄 =

⎡
⎢⎢⎣

0 0 0 0
0 1

4
𝑄2 − 1

4
𝑄2 0

0 − 1
4
𝑄2

1
4
𝑄2 0

0 0 0 0

⎤
⎥⎥⎦ . (21)

With this choice, the system 𝑆 can be expanded to 𝑆 and
the matrices 𝐴, �̃� and �̃� are described as

𝐴 =

[
𝐴11 𝐴12

𝐴21 𝐴22

]
=

⎡
⎢⎣

𝐴11 𝐴12 0 𝐴13

𝐴21 𝐴22 0 𝐴23

𝐴21 0 𝐴22 𝐴23

𝐴31 0 𝐴32 𝐴33

⎤
⎥⎦ ,

�̃� =

[
�̃�11 �̃�12

�̃�21 �̃�22

]
=

⎡
⎢⎣

𝐵11 𝐵12

𝐵21 𝐵22

𝐵21 𝐵22

𝐵31 𝐵32

⎤
⎥⎦ ,

�̃� =

[
�̃�11 �̃�12

�̃�21 �̃�22

]
=

⎡
⎢⎣

𝐻11 𝐻12

𝐻21 𝐻22

𝐻21 𝐻22

𝐻31 𝐻32

⎤
⎥⎦ . (22)

3.2 Decentralized Control of Two Subsystems for the
expanded system

Then, we consider the new system 𝑆𝐷 corresponding
to the system 𝑆. 𝑆𝐷 is expressed as follows.

𝑆𝐷 : �̃�(𝑘 + 1) = 𝐴𝐷�̃�(𝑘) + �̃�𝐷𝑢(𝑘) + �̃�𝐷𝑤(𝑘) (23)

where 𝐴𝐷, �̃�𝐷 and �̃�𝐷 are block lower triangular matri-
ces of 𝐴, �̃� and �̃� described as

𝐴𝐷 =

[
𝐴11 0

𝐴21 𝐴22

]
, �̃�𝐷 =

[
�̃�11 0

�̃�21 �̃�22

]
,

�̃�𝐷 =

[
�̃�11 0

�̃�21 �̃�22

]
. (24)

The performance index of the system 𝑆𝐷 is the same as
Eq. (16).

For the system 𝑆𝐷 which has an information structure
the decentralized feedback control to minimize Eq. (8) is
shown as follows.

Theorem 2: [5] For the system 𝑆𝐷 with the infor-
mation structure where subsystem 1 can measure state �̃�1,
and subsystem 2 can measure state �̃�1, �̃�2, the decentral-
ized feedback control to minimize Eq. (8) is shown below.

𝑢1(𝑘) = −(�̃�𝑝)11�̃�1(𝑘)− (�̃�𝑝)12𝜂2(𝑘) (25)

𝑢2(𝑘) = −(�̃�𝑝)21�̃�1(𝑘)− 𝐽�̃�2(𝑘)
−((�̃�𝑝)22 − 𝐽)𝜂2(𝑘) (26)

𝜂2(𝑘 + 1) = (𝐴𝐾)21�̃�1(𝑘) + (𝐴𝐾)22𝜂2(𝑘) (27)

where 𝐴𝐾 = 𝐴𝐷 − �̃�𝐷�̃�, 𝑅𝑖𝑐(𝐴𝐷, �̃�𝐷, �̃�, �̃�, 𝑃1, �̃�𝑝),
and 𝑅𝑖𝑐((𝐴𝐷)22, (�̃�𝐷)22, �̃�2, �̃�2, 𝑃2, 𝐽). 𝜂2(𝑘) is the
estimation of �̃�2(𝑘) calculated from �̃�1.

Proof: Omitted. see [5].

3.3 Contraction of State Feedback Law
The control law expressed above can be represented as

𝑢(𝑘) = 𝑢𝑥(𝑘)+𝑢𝜂(𝑘) = −�̃��̃�(𝑘)−�̃�𝑒𝜂(𝑘) where 𝜂(𝑘)
is the estimation of �̃�(𝑘). We use this control method into
the system 𝑆 and contract the method to match the sys-
tem 𝑆. We assume 𝜂(𝑘) for the system 𝑆 corresponding
to 𝜂(𝑘) for the system 𝑆 and 𝑢(𝑘) = −�̃��̃� − �̃�𝑒𝜂(𝑘)
can contract to 𝑢(𝑘) = −𝐾𝑥(𝑘)−𝐾𝑒𝜂(𝑘). To find con-
dition of contractability, we define contractability of the
estimation and control input.

Definition 2: 𝜂(𝑘) is contractible to 𝜂(𝑘) if
𝜂(𝑘;𝑥0, 𝑢) = 𝑈𝜂(𝑘; �̃�0, 𝑢), for all 𝑘 ≥ 0. (28)

Definition 3: We regard 𝑢(𝑘) = −�̃��̃�−�̃�𝑒𝜂(𝑘) as
the control input of the system 𝑆 and 𝑢(𝑘) = −𝐾𝑥(𝑘)−
𝐾𝑒𝜂(𝑘) as the control input of the system 𝑆. 𝑢(𝑘) =
−�̃��̃� − �̃�𝑒𝜂(𝑘) is contractible to 𝑢(𝑘) = −𝐾𝑥(𝑘) −
𝐾𝑒𝜂(𝑘) if following two equations are satisfied for any
input 𝑢(𝑡).

𝐾𝑥(𝑘;𝑥0, 𝑢) = �̃��̃�(𝑘; �̃�0, 𝑢), for all 𝑘 ≥ 0 (29)

𝐾𝑒𝜂(𝑘;𝑥0, 𝑢) = �̃�𝑒𝜂(𝑘; �̃�0, 𝑢), for all 𝑘 ≥ 0 (30)

We relate matrices such as �̃� = 𝐾𝑈 + 𝐹, �̃�𝑒 = 𝐾𝑒𝑈 +
𝐹𝑒, then the condition for the contractability is given by
the following Theorem. This is a main result in this paper.

Theorem 3: −�̃��̃� − �̃�𝑒𝜂(𝑘) is contractible to
−𝐾𝑥(𝑘) − 𝐾𝑒𝜂(𝑘) if 𝜂 can contract to 𝜂 and for 𝑖 =
1, 2, ⋅ ⋅ ⋅ , �̃�

𝐹𝑀 𝑖𝑉 = 0, 𝐹𝑀 𝑖−1𝑁 = 0,

𝐹𝑀 𝑖−1𝑁𝐻 = 0, 𝐹𝑒 = 0. (31)
Proof: 𝐾𝑥(𝑘;𝑥0, 𝑢) and �̃�𝑥(𝑘; �̃�0, 𝑢) are expressed

as follows.

𝐾𝑥(𝑘;𝑥0, 𝑢) =

𝐾𝐴𝑘𝑥0 +
𝑘∑

𝑖=0

{𝐾𝐴𝑘−𝑖𝐵𝑢(𝑖) +𝐾𝐴𝑘−𝑖𝐻𝑤(𝑖)} (32)

�̃�𝑥(𝑘; �̃�0, 𝑢) =

�̃�𝐴𝑘�̃�0 +

𝑘∑
𝑖=0

{�̃�𝐴𝑘−𝑖�̃�𝑢(𝑖) + �̃�𝐴𝑘−𝑖�̃�𝑤(𝑖)} (33)

It can be said that Eqs. (29) and (30) are equal as follows
from these Eqs. and Definition 2.

𝐾𝐴𝑘 = �̃�𝐴𝑘𝑉,𝐾𝐴𝑘−𝑖𝐵 = �̃�𝐴𝑘−𝑖�̃� (34)

𝐾𝐴𝑘−𝑖𝐻 = �̃�𝐴𝑘−𝑖�̃�,𝐾𝑒𝑈 = �̃�𝑒 (35)

We substitute Eqs. defined previous subsections and use
Eqs. in Theorem 1 for Eqs. (34) and (35). By comparing
right-hand side and left-hand side of Eqs. (34) and (35),
Eq. (31) is derived.
We choose matrices which satisfies this Theorem as

𝐹𝑒 = 0. (36)
Then, we get the decentralized control law of smart grid.
The control input is shown below.

[
𝑢1(𝑘)
𝑢2(𝑘)

]
= −

[
(�̃�11)1 (�̃�11)2 0

(�̃�21)1 (�̃�21)2 + 𝐽1 𝐽2

]⎡
⎣ 𝑥1(𝑘)

𝑥2(𝑘)
𝑥3(𝑘)

⎤
⎦

−
[

�̃�12

�̃�22 − 𝐽

] [
𝜂2(𝑘)
𝜂3(𝑘)

]
(37)

[
𝜂2(𝑘 + 1)
𝜂3(𝑘 + 1)

]
= (𝐴𝐾)21

[
𝑥1(𝑘)
𝑥2(𝑘)

]
+ (𝐴𝐾)22

[
𝜂2(𝑘)
𝜂3(𝑘)

]
(38)
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4. APPLICATION FOR SMART GRID
CONTROL

4.1 Electric Power System
We consider electric power network shown in Fig.3.

It focuses on Load frequency and is composed of two
power systems. There are a thermal power plant and a
wind power plant in Area 1 and there are a battery sys-
tem and micro gas turbine generators in Area 2 and the
power supply is done to the electric power demand with
these power generations. The detail and dynamics of the
electric power network is shown below.
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Fig. 3 Power Network Model

4.1.1 Relationships of demand and supply
Relationships between electric demand and supply is

shown in Eq. (39).

𝑀
𝑑Δ𝑓(𝑡)

𝑑𝑡
= Δ𝑃𝑚(𝑡)−Δ𝑃𝑒(𝑡) (39)

Δ𝑃𝑚(𝑡) is mechanical input of generator, Δ𝑃𝑒(𝑡) is an
electric output of generator, 𝑀 is a inertia constant of
generator, and Δ𝑓(𝑡) is a deviation of rotating velocity
of generator. System frequency changing, rotation fre-
quency of rotating load power consumption shift. This is
described as follows.

Δ𝑃𝑒(𝑡) = Δ𝑃𝐿(𝑡) +𝐷Δ𝑓(𝑡) (40)

Δ𝑃𝐿(𝑡) is a load deviation and 𝐷 is a damping constant.
In addition, when it is assumed that all generators in one
system are completely synchronous driving, system can
be expressed as one equivalent model like Fig 4. 𝑀𝑒𝑞 is
a inertia constant of equivalent generator.

�PL
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�f

��

��
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��
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Fig. 4 Equivalent Generator Model

4.1.2 Tie-Line Power Flow
By DC method, the tie-line power flow from Area 2 to

Area 1 𝑃𝑡𝑖𝑒(𝑡) is expressed like Eq. (41).

𝑃𝑡𝑖𝑒(𝑡) =
1

𝑋𝑇
(𝛿𝐴2(𝑡)− 𝛿𝐴1(𝑡)) (41)

𝑋𝑇 is the reactance of the interconnected line between
Area 1 and Area 2 and 𝛿𝐴1(𝑡), 𝛿𝐴2(𝑡) are phase angles of
each system. Using Frequency deviations of each system
Δ𝑓𝐴1(𝑡), Δ𝑓𝐴2(𝑡), Δ𝑃𝑡𝑖𝑒(𝑡), the deviation of 𝑃𝑡𝑖𝑒(𝑡), is
represented as Eq. (42).

Δ𝑃𝑡𝑖𝑒(𝑡) =
𝑇𝑡𝑖𝑒
𝑠

(Δ𝑓𝐴2(𝑡)−Δ𝑓𝐴1(𝑡)) (42)

𝑇𝑡𝑖𝑒 is a synchronizing coefficient. If there is 50Hz area,
then 𝑇𝑡𝑖𝑒 = 100𝜋/𝑋𝑇 .

4.1.3 Thermal Power Plant and Micro Gas Turbine Gen-
erator

In this paper, thermal power plant is assumed that all
generators in the thermal power plant are completely syn-
chronous driving and can be expressed as one equivalent
model like Fig 5.

RA1

1

��

�

Governor

TgA1s�1
1

�fA1

�PTcom

Turbine

TTs�1
1�xgA1

�PT

Fig. 5 Thermal Power Plant Model

Δ𝑃𝑇𝑐𝑜𝑚(𝑡) is a change command of production of elec-
tricity, 𝑅𝐴1 is a regulation constant, 𝑇𝑔𝐴1 is a governor
time constant, and 𝑇𝑇 is a gas turbine constant. Micro gas
turbine generator also can be expressed as one equivalent
model like Fig 5 but it is assumed that micro gas turbine
generator operates without governor free. Δ𝑃𝐺𝑐𝑜𝑚(𝑡) is
a change command of production of electricity, 𝑇𝑔𝐴2 is
a governor time constant, and 𝑇𝐺 is a gas turbine con-
stant. Micro gas turbine generator moves more quickly
than thermal power plant, which means 𝑇𝐺 is smaller
than 𝑇𝑇 .

4.1.4 Battery system
It is assumed that Battery system has a delay in re-

sponse of inverters and this is expressed with first-order
lag like Eq. (43). Δ𝑃𝐵𝑐𝑜𝑚(𝑡) is a change command of
discharge and charge of electricity, 𝑇𝐵 is an inverter time
constant. The state of discharge and charge 𝑥𝐵(𝑡) is ex-
pressed with discharge and charge amount Δ𝑃𝐵(𝑡) and
discharge and charge efficient value𝐾𝐵 like Eq. (44).

Δ𝑃𝐵(𝑡) = − 1

𝑇𝐵
Δ𝑃𝐵(𝑡) +

1

𝑇𝐵
Δ𝑃𝐵𝑐𝑜𝑚(𝑡) (43)

�̇�𝐵(𝑡) = −𝐾𝐵Δ𝑃𝐵(𝑡) (44)

4.1.5 Controller
It is assumed that each controller system calculates

integration of AR, 𝑈𝐴1(𝑡) and 𝑈𝐴2(𝑡). While the con-
troller system of Area 1 calculates by FFC method, the
controller system of Area 2 calculates by TBC method.

�̇�𝐴1(𝑡) = −𝐾𝐴1𝑓Δ𝑓𝐴1(𝑡) (45)

�̇�𝐴2(𝑡) = −𝐾𝐴2𝑓Δ𝑓𝐴2(𝑡)−Δ𝑃𝑡𝑖𝑒(𝑡) (46)

𝐾𝐴1, 𝐾𝐴2 are system constants, 𝑓 is a standard fre-
quency, and Δ𝑓𝐴1(𝑡), Δ𝑓𝐴2(𝑡) are deviations of frequen-
cies of each area.

The controller system of Area 2 decides a command of
production of electricity Δ𝑃𝐴2𝑐𝑜𝑚(𝑡) and divides it into
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Δ𝑃𝐺𝑐𝑜𝑚(𝑡) and Δ𝑃𝐵𝑐𝑜𝑚(𝑡) with the ratio of each rated
capacity.

Δ𝑃𝐺𝑐𝑜𝑚(𝑡) =
𝑆𝐺

𝑆𝐺 + 𝑆𝐵
Δ𝑃𝐴2𝑐𝑜𝑚(𝑡) (47)

Δ𝑃𝐵𝑐𝑜𝑚(𝑡) =
𝑆𝐵

𝑆𝐺 + 𝑆𝐵
Δ𝑃𝐴2𝑐𝑜𝑚(𝑡) (48)

We regard load fluctuation and wind power fluctuation as
disturbances made by reference to actual fluctuation.

4.2 Expression of State Space on Smart Grid
By preceding section, we can represent the smart grid

shown in Fig.3 the state space as in Eq. (49).

�̇�(𝑡) = 𝐴𝑐𝑥(𝑡) +𝐵𝑐𝑢(𝑡) +𝐻𝑐𝑤(𝑡) (49)

𝑥(𝑡) =

⎡
⎣ 𝑥1(𝑡)

𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ𝑓𝐴1(𝑡)
Δ𝑃𝑇 (𝑡)
Δ𝑥𝑔𝐴1(𝑡)
𝑈𝐴1(𝑡)
Δ𝑃𝑡𝑖𝑒(𝑡)
Δ𝑓𝐴2(𝑡)
Δ𝑃𝐺(𝑡)
Δ𝑥𝑔𝐴2(𝑡)
𝑥𝐵(𝑡)
Δ𝑃𝐵(𝑡)
𝑈𝐴2(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

𝑢(𝑡) =

[
𝑢𝐴1(𝑡)
𝑢𝐴2(𝑡)

]
=

[
Δ𝑃𝑇𝑐𝑜𝑚(𝑡)
Δ𝑃𝐴2𝑐𝑜𝑚(𝑡)

]
(51)

𝑤(𝑡) =

[
𝑤𝐴1(𝑡)
𝑤𝐴2(𝑡)

]
=

[
Δ𝑃𝑊 (𝑡)− 𝑃𝐿𝐴1(𝑡)

Δ− 𝑃𝐿𝐴2(𝑡)

]
(52)

𝐴𝑐 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴𝑐11 𝐴𝑐12 𝐴𝑐13

𝐴𝑐21 𝐴𝑐22 𝐴𝑐23

𝐴31 𝐴𝑐32 𝐴𝑐33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 𝐷𝐴1
𝑀𝐴1

1
𝑀𝐴1

0 0
𝑆𝐴2

𝑀𝐴1𝑆𝐴1
0 0 0 0 0 0

0 − 1
𝑇𝑇

1
𝑇𝑇

0 0 0 0 0 0 0 0

− 1
𝑇𝑔𝐴1𝑅𝐴1

0 − 1
𝑇𝑔𝐴1

0 0 0 0 0 0 0 0

−𝐾𝐴1𝑓 0 0 0 1 0 0 0 0 0 0

−𝑇𝑡𝑖𝑒 0 0 0 0 𝑇𝑡𝑖𝑒 0 0 0 0 0

0 0 0 0 − 1
𝑀𝐴2

− 𝐷𝐴2
𝑀𝐴2

1
𝑀𝐴2

0 0 1
𝑀𝐴2

0

0 0 0 0 0 0 − 1
𝑇𝐺

1
𝑇𝐺

0 0 0

0 0 0 0 0 0 0 − 1
𝑇𝑔𝐴2

0 0 0

0 0 0 0 0 0 0 0 0−𝐾𝐵 0

0 0 0 0 0 0 0 0 0− 1
𝑇𝐵

0

0 0 0 0 −1 −𝐾𝐴2𝑓 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)

𝐵𝑐 =

[
𝐵𝑐11 𝐵𝑐12
𝐵𝑐21 𝐵𝑐22
𝐵𝑐31 𝐵𝑐32

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1

𝑇𝑔𝐴1
0

0 0
0 0
0 0
0 0

0
𝑆𝐺

𝑇𝑔𝐴2(𝑆𝐺+𝑆𝐵)
0 0

0
𝑆𝐵

𝑇𝐵(𝑆𝐺+𝑆𝐵)
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(54)

𝐻𝑐 =

[
𝐻𝑐11 𝐻𝑐12
𝐻𝑐21 𝐻𝑐22
𝐻𝑐31 𝐻𝑐32

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑀𝐴1

0

0 0
0 0
0 0
0 0

0 1
𝑀𝐴2

0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55)

To treat this system as discrete system, it is converted by
the sampling time 𝑇 .

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) +𝐵𝑢(𝑘) +𝐻𝑤(𝑘) (56)

The control object is to minimize the following cost func-
tion (57) and we assume the situation that the controller
system of Area 1 decides Δ𝑃𝑇𝑐𝑜𝑚(𝑡) by 𝑥1(𝑡), 𝑥2(𝑡) and
the controller system of Area 2 determines Δ𝑃𝐴2𝑐𝑜𝑚(𝑡)
by 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡). the parameters of the cost function
are made𝑄 = diag{100 0 0 10 10 100 0 0 10 0 10}, 𝑅 =
5𝐼2.

𝐽(𝑥0, 𝑢) = 𝐸[
∞∑
𝑘=0

(𝑥𝑇𝑄𝑥+ 𝑢𝑇𝑅𝑢)] (57)

To apply the decentralized control of two subsystems
with overlapping information in preceding chapter, we
expand the system (56), then, we get the expanded sys-
tem (58) and the new cost function (59) by using matrices
in Eq. (21).

�̃�(𝑘 + 1) = 𝐴�̃�(𝑘) + �̃�𝑢(𝑘) + �̃�𝑤(𝑘) (58)

𝐽(�̃�0, 𝑢) = 𝐸[

∞∑
𝑘=0

(�̃�𝑇 �̃��̃�+ 𝑢𝑇 �̃�𝑢)] (59)

We consider the new system 𝑆𝐷 corresponding to the
system 𝑆 , derive a decentralized control of two sub-
systems, and contract this decentralized control law. We
verify power fluctuations and frequency deviations and
compare the proposed decentralized control, a centralized
control, and other decentralized controls. The parameters
of power network are shown below.

Table 1 Simulation Parameters
standard frequency 𝑓 [Hz] 50
Area1 system capacity 𝑆𝐴1[MW] 3000
Area1 inertia constant𝑀𝐴1[s] 10
Area1 damping constant 𝐷𝐴1[p.u.] 1
Area1 system constant𝐾𝐴1[% MW] 0.1
Area1 gas turbine constant 𝑇𝑇 [s] 9
Area1 governor time constant 𝑇𝑔𝐴1[s] 0.25
Area1 regulation constant 𝑅𝐴1[s] 0.05
Area2 system capacity 𝑆𝐴2[MW] 900
Area2 inertia constant𝑀𝐴2[s] 10
Area2 damping constant 𝐷𝐴2[p.u.] 2
Area2 system constant𝐾𝐴2[% MW] 0.1
Area2 gas turbine constant 𝑇𝐺[s] 1
Area2 governor time constant 𝑇𝑔𝐴2[s] 1
Area2 inverter time constant 𝑇𝐵[s] 1
Area2 gas turbine rated capacity 𝑆𝐺[MW] 900
Area2 battery rated capacity 𝑆𝐵[MW] 200
Area2 discharge and charge efficient value𝐾𝐵 0.94
synchronizing coefficient 𝑇𝑡𝑖𝑒[s] 2.0
sampling time 𝑇 [s] 1

4.3 Simulation Results

We simulates the effectiveness of the proposed method
by using Matlab R2011a.

4.3.1 Power Fluctuation and Frequency Deviation
When applying the proposed method, power fluctua-

tions and frequency deviations in each area are shown in
Fig 6 and Fig 7. In Fig 6 (a), the blue line is the load
fluctuation of area 1 𝑃𝐿𝐴1(𝑡), the greenish yellow line is
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the wind power fluctuation 𝑃𝑊 (𝑡), the red line is fluctu-
ation of the output of the thermal power plant 𝑃𝑇 (𝑡), and
the light blue line is fluctuation of the tie-line power flow
between area 1 and area 2 𝑃𝑡𝑖𝑒(𝑡). In Fig 6 (b), the blue
line is the load fluctuation of area 2 𝑃𝐿𝐴2(𝑡), the green-
ish yellow line is fluctuation of the output of the micro
gas turbine generator 𝑃𝐺(𝑡), the red line is fluctuation
of the output of the battery system 𝑃𝐵(𝑡), and the light
blue line is fluctuation of the tie-line power flow between
area 1 and area 2 -𝑃𝑡𝑖𝑒(𝑡). From Fig 6, we can see the
outputs of controllable generators (thermal power plant,
micro gas turbine generator and battery system) change
to adapt fluctuations of load and wind power. That means
these generators correct imbalances between electric de-
mand and supply and stabilize power networks. In addi-
tion, we can also see stabilization of frequency deviations
in Fig 7, which range within ±0.2[Hz].
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Fig. 6 Power Fluctuation

0 200 400 600 800 1000 1200
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t[s]

Fr
eq

ue
nc

y 
D

ev
ia

tio
n[

H
z]

(a)Area 1

0 200 400 600 800 1000 1200
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t[s]

Fr
eq

ue
nc

y 
D

ev
ia

tio
n[

H
z]

(b)Area 2
Fig. 7 Frequency Deviation

4.3.2 Comparison of Cost Function Value
Cost function value of 𝑘=800[s] is shown in Fig 8.

Here, in Fig 8, C is the proposed decentralized control
method, Cc is the centralized control method, and Co is
the decentralized control method of [2]. From Fig 8, the
cost value of the proposed method is second lower after
the centralized control method and lowest among the de-
centralized control methods.

225

227

C
os

t

C Cc Co
223

Fig. 8 Comparison of Cost (k=800)

5. CONCLUSION

In this paper, we applied the decentralized control
of smart grid by using overlapping information to con-
trol of load frequency of power networks that installed
distributed generations. We expanded the state space
of the system ,got a decentralized feedback law for the
expanded system and contract the decentralized feed-
back law to match the original system. Then, we sim-
ulated decentralized large scale power network systems,
and showed the effectiveness of the load frequency con-
trol by using the proposed decentralized control method
by verifying power fluctuation and frequency deviation
and comparison between the proposed method and other
methods.
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