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Abstract: This paper describes load leveling control by Real-Time Dynamical pricing based on optimization method.
First, we propose a profit maximization problem of supply and demand, satisfying the supply constraint and the bal-
ance between supply and demand. Then we rewrite them to dual problem which minimizes electricity price. We made
algorithm to solve the dual problem by Steepest Descent Method and proof its convergence. Finally some numerical
simulations show the effectiveness of the proposed load leveling control.
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1. INTRODUCTION
The power of demand is increasing because of eco-

nomic growth, on the other hand, that of supply is de-
creasing because of environment concern[1]. In this
paradigm shift, smart-grid system with Demand Side
Management (DSM) is required to use electricity effi-
ciently. One of the DSM technique is to use electricity
price, which is called ”dynamic pricing”. Several dy-
namic pricing is already proposed, Time-Of-Use Pric-
ing (TOU)[2] and Critical-Peak-Pricing (CPP)[3]. These
pricing set fixed price at given times or peak times.
It’s same to existing pricing in that the price is pre-
determined. Consumers use power in pre-determined
price plan and generators generates power to balance sup-
ply and demand. Left side of Fig.1 shows the fixed price
model.

In this paper, we use Real-Time-Pricing (RTP) which
sets price one hour period at beginning of the day[4].
Right side of Fig.1 shows the RTP model. This pricing
calculates optimal price, hence RTP can control demand
more flexible than TOU and CPP. It’s useful for unsta-
ble renewable energy (like wind power and solar power)
and unexpected short supply (like accidents). However,
there are little approach for RTP by control theorem and
there are needs to verify the system with new smart-grid
system.

In the RTP model, there are three types of player: gen-
erators, consumers, and Independent System Operator
(ISO). The ISO is a non-profit institution and indepen-
dents from the generators and the consumers. In Japan,
the institution corresponds to the load dispatching center.

ISO has an electricity market and calculate price to
match balance of supply and demand. There are many
electricity markets[5] and they have some system corre-
spond to ISO’s market. In this market, generators and
consumers don’t bit and don’t conduct derivatives trad-
ing and negotiation transaction.

The information asymmetry is large problem for ISO
to calculate price. Generators know their own cost to
generate power, hence ISO can get information about
generators and formulate supply model. But consumers
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don’t know their own utility to consume power, (in ad-
dition consumers composed from many consumers and
it’s decentralized[6]), hence ISO can’t formulate demand
model. ISO must calculate optimal price from only sup-
ply and demand plan. Roozbehani[7] modeled and ana-
lyzed the nonlinear system. The system is updated by a
kind of Gauss-Seidel Method[8] and it may be unstable
relying on generators or consumers model and the system
doesn’t consider constrained generation. In this paper, we
propose RTP model with Steepest Descent Method and
level demand load. Price is updated from supply or de-
mand plan. Assign proper stepsize value and the system
will be stable and converge in the constrained generation.

This paper is organized as follows. The system, supply
and demand model is presented in Section 2. We propose
maximization problem and its dual problem in Section
3. To solve the problem, we employ Steepest Descent
Method as an optimization method in Section 4. In sec-
tion 5, we add perturbation to extend the model. Simu-
lation result are given in Section 6, finally this paper is
concluded in Section 7.

2. PROBLEM FORMULATION
We model an electricity market with three participants:

generators, consumers, and ISO. Generators and Con-
sumers plan their supply or demand to maximize their
profit. In this model, consumers and generators make
plan for next day’s 24 hour period every per 1 hour. ISO
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Fig. 2 Schematic views of the model

controls the electric system to match supply and demand
and to maximize profits of society as a whole, which is
expressed as the sum of welfare of generators and con-
sumers. We consider the maximization problem solved
by the ISO.

The market sets the electricity price as follows. Fig.2
is the conceptual diagram.

1. The ISO sets within-day electricity price per hour
and convey it to generators and consumers.

2. Generators and consumers create their plan to gen-
erate or consume and convey these plan to ISO.

3. If the supply and the demand is not match, ISO re-
sets price and convey again.

4. Repeat step.2 and step.3 N times.

2.1 Supply and demand model
Let xs ∈ R+(the set of nonnegative real numbers) and

xd ∈ R+ denote the power supply of generators and the
power demand of consumers. Let [smin, smax] denotes
the constrained generation. Let λ ∈ R+(the set of posi-
tive real numbers) denotes the electricity price. The mon-
etary cost when the generators generate xs is denoted by
c(xs) which is generically called “cost function”. Simi-
larly, the monetary welfare when the consumers consume
xd is denoted by v(xd) which is generically called “util-
ity function”. These generators and consumers are mod-
eled based on the Representative Agent model[6] and put
them as one generator and one consumer. Here we em-
ploy assumptions for utility and cost function.

Assumption 1. v(xd) is a C2[0,∞) function, strictly in-
creasing and strictly convex. c(xs) is a C2[0,∞) func-
tion, strictly increasing and strictly concave.

Let optimal power of supply denotes s(λ) ∈ R+

which are called “supply function” and optimal power of
demand denotes d(λ) ∈ R+ which are called “demand
function”. We define d(λ) and s(λ) as follows.

d(λ) = argmax
xd≥0

v(xd) − λxd (1)

= max
xd≥0

{0, {x|v̇(xd) = λ}} (2)

s(λ) = arg max
smin≤xs≤smax

λxs − c(xs) (3)

= max
smin≤xs≤smax

{0, {x|ċ(xs) = λ}} (4)

λxd is the cost to buy energy x and (1) means that
the consumers buy d(λ) to maximize their own welfare.
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Fig. 3 Utility function v(xd) and Cost function c(xs)

Similarly, λxs is the sales of energy x and (3) means that
the generators sell s(λ) to maximize their own welfare.
Fig.3 is the conceptual diagram of (1) and (3).

We rewrite supply and demand function to s(λ) =
ċ−1(λ), d(λ) = v̇−1(λ) for simplification.

3. MAXIMIZATION PROBLEM
3.1 ISO model

In the electricity model, generators and consumers
don’t bit. So, we introduce the following assumption.

Assumption 2. 　
1. ISO knows function c(xs) and s(λ).
2. On the other hand, ISO doesn’t konw function
v(xd) and d(λ).

To simplify the maximization problem for ISO, we add
the following assumption.

Assumption 3. 　
1. Resistive losses in the transmission and distribu-
tion lines are negligible.
2. The line capacities are high enough, and conges-
tion will not occur.
3. There are sufficient reserve capacity.

ISO control to maximize the sum of generators and
consumers profit, hence the maximization problem is as
follows.

max
xd≥0,smin≤xs≤smax

{v(xd) − λxd} + {λxs − c(xs)} (5)

⇐⇒ max
xd≥0,smin≤xs≤smax

v(xd) − c(xs) (6)

s.t. xs − xd = 0

Because ISO can’t get function v(xd) and control
xd, xs, we can’t solve (6) directly. With that, we will
use a dual problem.

3.2 Dual Problem
Let lagrange coefficient denotes λ0. (6) is primal prob-

lem and the dual problem is as follows.

min
λ

ϕ(λ), (7)

ϕ(λ) = max
xd≥0,smin≤xs≤smax

L(λ0, xd, xs), (8)

L(λ0, xd, xs)=(v(xd)−λ0xd)+(λ0xs−c(xs)) (9)
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Here is obtained a following lemma. It is derived from
the Lagrangian.

Lemma 1. If assumptions 1 - 3 are satisfied, optimal so-
lutions x∗

d = d(λ0) , x∗
s = s(λ0) is obtained for the

primal problem (6). Moreover λ corresponds to λ0. The
proof is written in [9].

We write λ instead of λ0, and optimal solution write
as x∗

d(λ), x∗
s(λ).

When we describe f(xd, xs) = v(xd) − c(xs),
h(xd, xs) = xs−xd, here is obtained a following lemma.

Lemma 2. Assumptions 1 - 3 are satisfied. If f(xd, xs)
and h(xd, xs) are continuous and the domain of (xd, xs)
is closed unbounded set, ϕ(λ) is convex function. In ad-
dition, If optimal solutions of dual problem λ∗ is unique,
ϕ(λ) is differentiable and the gradient is as follows. The
proof is written in [9].

∇ϕ(λ) = h(x∗
d(λ), x∗

s(λ)) (10)

4. STEEPEST DESCENT METHOD
ϕ(λ) can replace each optimization problem for xd

and xs. ϕd, ϕs correspond to (1),(3) and these means to
maximize welfare of generators or consumers.

ϕ(λ) = ϕd(λ) + ϕs(λ) (11)
ϕd = max

xd≥0
(v(xd) − λxd) (12)

ϕs = max
smin≤xs≤smax

(λxs − c(xs)) (13)

Because (8) satisfies lemma 2, ϕ(λ) is differentiable
and the gradient is written as (14). The parameter d(λ)
gets from consumer and ISO can calculate ∇ϕ(λ)

∇ϕ(λ) = x∗
s(λ) − x∗

d(λ) = −(d(λ) − s(λ)) (14)

Steepest Descent Method is well known to solve opti-
mal solution λ∗. Let t ∈ Z+(the set of positive integers)
denotes iteration count and γ denotes stepsize which is
constant and small value. The update formula can be
written by (15).

λ(t + 1) = λ(t) − γ (∇ϕ(λ))
= λ(t) + γ (d(λ(t)) − s(λ(t))) (15)

We propose the price-update algorithm under the as-
sumptions 1 - 3.

Algorithm 1. 　
1. The ISO set initial price λ(0).
2. Generators and consumers calculate supply and
demand from the electricity price. When the number
of occurrences is t, they plan d(λ(t)) and s(λ(t)).

d(λ(t))=argmax
xd≥0

v(xd) − λ(t)xd (16)

s(λ(t))=arg max
smin≤xs≤smax

λ(t)xs − c(xs) (17)

3. Price is updated by Steepest Descent Method.
λ(t + 1) = λ(t) + γ (D(λ(t)) − s(λ(t))) (18)

4. Repeat step.2 and step.3 N times.

4.1 The convergence of Steepest Descent Method
We will proof convergence of Steepest Descent

Method when the step size is constant[10]. Let
λ1, λ2(∀λ1, λ2 ∈ R) denote parameters of λ and we
make the following assumption.

Assumption 4. 　
1. ϕ(λ) ≥ 0, ∀λ ∈ R

2. ϕ(λ) is Lipschitz continuity, which solves fol-
lowing equation where K0 ≥ 0. The minimum of
K0 is called Lipschitz constant and denoted as K.

‖∇ϕ(λ1) −∇ϕ(λ2)‖ ≤ K0‖λ1 − λ2‖ (19)
3. There is α0 which satisfy following equation.
The maximum of α0 is denoted as α.
(∇ϕ(λ1)−∇ϕ(λ2)) (λ1−λ2)≥α0‖λ1−λ2‖2 (20)

We have the following theorem.

Theorem 1. Consider assumptions 1 - 3 are satisfied.
Then Algorithm 1 converges when γ holds the following
inequality.

0 < γ <
2α

K2
(21)

Proof. When we write algorithm as following equation,
T (λ(t)) is called a contraction mapping.

λ(t + 1) = T (λ(t)), t = 0, 1, · · · (22)
‖T (λ1) − T (λ2)‖ ≤ ζ‖λ1 − λ2‖, 0 ≤ ζ < 1 (23)

From the Algorithm 1, T (λ(t)) can be set as follows .

T (λ(t)) = λ(t) − γ∇ϕ(λ(t)) (24)

For simplifying, we rewrite λ(t) as λ. From assump-
tion4,

‖T (λ1) − T (λ2)‖2

= ‖ ((λ1 − γ∇ϕ(λ1)) − ((λ2 − γ∇ϕ(λ2)) ‖2

= ‖λ1 − λ2‖2 + γ2 (∇ϕ(λ1) −∇ϕ(λ2))
2

−2γ (∇ϕ(λ1) −∇ϕ(λ2)) (λ1 − λ2)
≤ ‖λ1 − λ2‖2 + γ2K‖λ1 − λ2‖2 − 2γα‖λ1 − λ2‖
=

(
1 − 2αγ + K2γ2

) ‖λ1 − λ2‖2 (25)

(1− 2αγ + K2γ2) corresponds to ζ. If (24) is a contrac-
tion mapping, γ is given as follows.

(23) ⇔ 0 <
(
1 − 2αγ + K2γ2

)
< 1

⇔ 0 < γ <
2α

K2
(26)

4.2 Calculation of Lipschitz constantK and α

From (19),

‖∇ϕ(λ1) −∇ϕ(λ2)‖
‖λ1 − λ2‖ ≤ K0 (27)

If λ1 approximates to λ2, left-hand side of (27) means
derivation. Now therefore (19) rewrite to as follows.

K0 ≥ ‖∇2ϕ(λ)‖ =
∥∥∥∥ 1

v̈(v̇−1(λ))
− 1

c̈(ċ−1(λ))

∥∥∥∥ (28)
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From assumption 1, c̈ > 0, v̈ < 0 and we can calculate
Lipschitz constant K as follows.

K = max
λ

(
1

c̈(ċ−1(λ))
− 1

v̈(v̇−1(λ))

)
(29)

In a similar way, from (20),

α0 ≤ (∇(λ1) −∇(λ2))(λ1 − λ2)
‖λ1 − λ2‖2

≤ ‖∇ϕ(λ1) −∇ϕ(λ2)‖
‖λ1 − λ2‖ (30)

Same as (27), left-hand side of (30) means derivation.
Now therefore (30) rewrite to as follows.

α0 ≤ ‖∇2ϕ(λ)‖ =
∥∥∥∥ 1

v̈(v̇−1(λ))
− 1

c̈(ċ−1(λ))

∥∥∥∥ (31)

From assumption 1, c̈ > 0, v̈ < 0 and we can α as fol-
lows.

α = min
λ

(
1

c̈(ċ−1(λ))
− 1

v̈(v̇−1(λ))

)
(32)

It must be noted that parameters K and α can’t get in
real because ISO can’t get function v̇−1(λ).

5. CONSIDERWITH UNCERTAIN
PERTURBATION MODEL

We consider two models of uncertainty in demand
model, Additive Perturbation and Aggregative Perturba-
tion. Utility function is modelled as

ṽ(xd) = v (x − d1) (33)

ṽ(xd) = (1 + δ2)v
(

xd

(1 + δ2)

)
(34)

d1 ∈ R+ is aggregative parameter and (1 + δ2) ∈ R+ is
additive parameter. ṽ(xd) : R+ �→ R+ is utility function
with perturbation. (35) and (36) are demand function of
(33) and (34).

d̃(λ) = d1 + v̇−1(λ) (35)
d̃(λ) = (1 + δ2)v̇−1(λ) (36)

Parameter d1 means minimum demand, which is non-
volatility for price. Parameter (1+δ2) means model error,
especially for aggregating.

Considering these two perturbation, new utility func-
tion ṽ(xd) and demand function D(λ) represents as fol-
lows.

ṽ(xd) = (1 + δ2)v
(

xd

1 + δ2
− d1

)
(37)

D(λ) = d1 + (1 + δ2)v̇−1(λ) (38)

From Section 4.2, K and α gets as follows.

K = max
λ

(
1

c̈(ċ−1(λ))
− (1 + δ2)

v̈(v̇−1(λ))

)
(39)

α = min
λ

(
1

c̈(ċ−1(λ))
− (1 + δ2)

v̈(v̇−1(λ))

)
(40)

Rewrite d(λ(t)) → D(λ(t)), s(λ(t)) → ċ−1(λ(t))
and we get an algorithm from (15).

Generators
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Fig. 4 Schematic views of the model

Algorithm 2. 　
1. The ISO set initial price λ(0).
2. Generators and consumers calculate supply and
demand from the electricity price. When the number
of occurrences is t, the equation is as follows.

D(λ(t)) = d1 + (1 + δ2)v̇−1(λ(t)) (41)
s(λ(t)) = ċ−1(λ(t)) (42)

3. Price is updated by Steepest Descent Method.
λ(t + 1) = λ(t) + γ (D(λ(t)) − s(λ(t))) (43)

4. Repeat step.2 and step.3 N times.

Fig.4 is the conceptual diagram.

6. NUMERICAL SIMULATION
The simulation goal is to converge demand plan of the

next day in the constrained generation [smin, smax]. This
simulation is for 24hour period and price is updated every
per 1 hour.

We denoted parameters μ1, μ2 and rewrote (41) to fol-
lowing equation.

D(λ(t)) = μ1d1 + μ2(1 + δ2)v̇−1(λ(t)) (44)

δ2 ∼ N (0, 0.012) is random disturbance. d1 is electricity
demand data of TEPCO in 10th August 2011 [11]. Using
μ1, minimum demand represents μ1d1.

Parameter μ2 sets considering price elasticity. Param-
eter μ1 adjust such that the day-long sum demand of D(t)
without constrained generation equal to the day-long sum
demand of d1. Denote iteration counts as N and demand
or price at time k as •k, it represents as follows.

24∑
k=0

Dk(N) ≈
24∑

k=0

d1,k (45)

Set utility function and cost function as follows.

v(xd) = a log(xd), c(xs) = bx3
s (46)

Parameter a adjusted such that the day-long sum demand
of d1 equal to day-long sum demand calculated by v(xd)
and fixed price of TOU. Similarly, Parameter b adjusted
such that the day-long sum demand of d1 equal to day-
long sum supply calculated by c(xs) and fixed price of
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TOU. Denote fixed price at time k as λf,k, these represent
as follows.

24∑
k=0

d1,k ≈
24∑

k=0

v̇−1(λf,k) (47)

24∑
k=0

d1,k ≈
24∑

k=0

ċ−1(λf,k) (48)

From (46), parameters calculate as follows.

a =
∑24

k=0 d1,k∑24
k=0 (1 /λf,k )

(49)

b =
1
3

(∑24
k=0

√
(λf,k)∑24

k=0 d1,k

)2

(50)

Fixed price λf,k[yen/MW] set as follows. We used
TEPCO price plan ”Season-and time-specific lighting
(Denka Jozu)” [11] as a reference. (51) shows in Fig.5

λf,k =

⎧⎨
⎩

10 × 103 k = 0, · · · , 6, 23, 24
20 × 103 k = 7, · · · , 9, 16, · · · , 22
30 × 103 k = 10, · · · , 15

(51)

We chose parameters N = 100, smin = 3.4× 104[MW],
smax = 3.6 × 104[MW], μ2 = 0.2, and γ = 0.5. From
above parameters, a = 4.009 × 107, b = 9.993 × 10−4,
μ1 = 0.67 were calculated.

The result of simulation shows in Fig.6 - Fig.8. The
horizontal axis is time k and the vertical axis is power
or price. Yellow line is constrained generation. Red,
cyan, green, purple and blue line is iteration count when
t = 1, 2, 3, 4, 5, 6 and black line is when t = 100. From
9:00 to 19:00 in Fig.8, the demand exceed constrained
generation at first, but price increase and demand de-
crease, then the black line converge near constrained gen-
eration.

6.1 Comparing existing and proposed method
We compare with previous method[7] and shows in

Fig.9. Solid line is proposed method and dot line is exist-
ing method when t = 100.

Converging at 13:00 and 23:00 shows in Fig.10 and
Fig.11. The horizontal axis is iteration count t and the
vertical axis is power or price. Red and blue line are de-
mand at 13:00 and 23:00. Solid and dot line are proposed
method and existing method. In Fig.11 at 13:00, the de-
mand converges to constrained generation. At 23:00, the
convergence value,in the constrained generation, is same
between existing method and proposed method. In this

simulation at 23:00, proposed method is faster to con-
verge than existing method, but the convergence speed of
proposed method depends on the value of step size γ.

7. SUMMARY AND FUTUREWORKS
We proposed a load leveling control in the electricity

market with the supply constraints based on the Steepest
Descent Method. First, we modeled demand, supply, and
electricity market, ISO. We proposed optimization prob-
lem for ISO and solved by dual problem and the Steepest
Descent Method. We proved the system is stability by
contraction mapping and confirmed by simulation. The
system predicts the next day’s electricity price or demand,
hence we will extend to the prediction of one hour or
five minutes ahead. Another future work is to derive the
model considering variable energy and batteries.

REFERENCES
[1] E. Bitar, P. P. Khargonekar, K. Poolla, “Systems and

Control Opportunities in the Integration of Renew-
able Energy into the Smart Grid”, Proceedings of the
18th IFAC World Congress, pp.4927-4932, 2011.

[2] S. Braithwait, “Residential TOU Price Response in
the Presence of Interactive Communication Equip-
ment”, Pricing in Competitive Electricity Markets,
pp.359-373, 2000.

[3] A. Faruqui and S. Sergici, “Household Response to
Dynamic Pricing of Electricity - A Survey of the Em-
pirical Evidence”, Journal of Regulatory Economics,
Vol.38, No.2 pp.193-225, 2010.

[4] S. Borenstein, M. Jaske, A. Rosenfeld, “Dynamic
pricing, advanced metering, and demand response in
electricity markets”, Center for the Study of Energy
Markets, 2002

[5] M. Yajima, “Analysis of Liberalization Models of the
Electricity Markets,” CRIEPI Report, (2002)

[6] M. Roozbehani, M. A. Dahleh, S. K. Mitter, “On the
stability of wholesale electricity markets under real-
time pricing”, Proceeding of 49th IEEE Conference
on Decision and Control, pp.1911-1918 (2010)

[7] M. Roozbehani, M. A. Dahleh and S. K. Mitter,
“Volatility of Power Grids under Real-Time Pricing”,
IEEE Transactions on Power Systems, Accepted,
2012.

[8] K. L. Judd, Numerical Methods in Economics, The
MIT Press, 1998.

[9] E. Aiyoshi, K. Masuda, “Basic Knowledge for Mar-
ket Principle : Approaches to the Price Coordination
Mechanism by Using Optimization Theory and Al-
gorithm”, The transactions of the Institute of Electri-
cal Engineers of Japan. C, A publication of Electron-
ics, Information and System Society Vol.130, No.4,
pp.534-539, 2010.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and
Distributed Computation:Numerical Methods, Pren-
tice Hall, 1989.

[11] TEPCO Website,
”http://www.tepco.co.jp/en/index-e.html”

-135-

 



0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 104

Time[H]

Pr
ic

e[
ye

n/
M

W
]

t=1
t=2
t=3
t=4
t=5
t=100

Fig. 6 Electricity price

0 5 10 15 20
3.3

3.4

3.5

3.6

3.7

3.8

3.9 x 104

Time[H]

Su
pp

ly
[M

W
]

t=1
t=2
t=3
t=4
t=5
t=100

Fig. 7 Power supply

0 5 10 15 20
3.3

3.4

3.5

3.6

3.7

3.8

3.9 x 104

Time[H]

D
em

an
d 

[M
W

]

t=1
t=2
t=3
t=4
t=5
t=100

Fig. 8 Power demand

0 5 10 15 20
3

3.2

3.4

3.6

3.8

4

4.2
x 104

Time[H]

D
em

an
d 

[M
W

]

Proposed
Existing

Fig. 9 Comparison between proposed method and exist-
ing method (t = 100)

0 5 10 15 20
1

1.5

2

2.5

3

3.5

4
x 104

Step

Pr
ic

e[
ye

n/
M

W
]

13:00(Proposed)
13:00(Existing)
23:00(Proposed)
23:00(Existing)

Fig. 10 Price at 13:00 and 23:00

0 5 10 15 20
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 104

Step

D
em

an
d 

[M
W

]

13:00(Proposed)
13:00(Existing)
23:00(Proposed)
23:00(Existing)

Fig. 11 Demand at 13:00 and 23:00

-136-

 


	Back

