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Abstract— This paper deals with a fault-tolerant sensor
network configuration problem for a target navigation.

A sensor network system consists of many sensor nodes
and its network connections. Each sensor node can exchange
information by wireless communication. A disadvantage of this
system’s property is that if there is an inaccurate information
from a faulty sensor, this information has possibilities to be
diffused to other sensors. Therefore, it is important to reduce
effects of the inaccurate information by detecting a faulty
sensor as possible as we can. And moreover, in feedback
control system for navigation, we have to consider a lack
of control inputs which happens depending on each sensor’s
intermittent observation. We propose two estimation methods
for constructing a fault tolerant system. Specifically, we propose
a fault-evaluation matrix for the fault detection, and we define
a novel switching rule for shutting off inaccurate measurement
data. Then we also propose a compensation algorithm for the
problem of intermittent observation by using an estimated
observation value.

I. INTRODUCTION

Wireless sensor networks systems have attracted more

attention in recent years. This system has been applied

to collecting information in a wide range (for example,

disaster planning, environmental monitoring, security etc.)

by using dynamic network reconfiguration and information

exchange between sensor nodes. And also, a sensor network

can be applied to state estimation for a moving target [1]–

[3]. Moreover, in this paper, we would like to construct a

navigation system based on feedback control via a sensor

network [4]. Sensor networks are also superior in terms

of information integration functions. That is because sensor

networks can improve measurement accuracy through the

information exchange and sharing. Meanwhile, the disadvan-

tage of this system’s property is that if there is an inaccurate

information from a faulty sensor [5], this information has

possibilities to be diffused to other sensors, and one sensor’s

fault causes adverse effects on other not faulty sensors’

estimation results. Hence, to achieve the navigation based on

a state feedback control, we have to dynamically detect the

failure occurrence and reduce adverse influence of the sensor

fault on the state estimation. And furthermore, in feedback

control system, we have to consider a lack of control inputs

which is caused on each sensor’s intermittent observation

[6] and communication failure. Therefore, in parallel with

fault detection, we have to compensate for the intermittent

observation.
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About a construction of fault-tolerant sensor networks, the

fault detection problem of targets which bases on comparison

of the sensor measurement is discussed by [7]. But they don’t

consider the reliability of the sensor itself which observes

the target’s state. Sensors’ fault are considered by [8], but

this paper didn’t use the fault detection result to reduce the

effect of fault signals on estimation. Meanwhile, under the

intermittent observation, analysis of state estimation property

based on KF is discussed by [9], [10]. However, in those

papers, they don’t consider the compensation for the missing

observation data.

In this paper, we assume such a fault that a random

fault signal is mixed into the sensor’s measurement value

and occur the biased error. At first, we discuss a fault

detection problem on sensors measurement by using the

observation error covariance. Then, by combining the fault

detection result with switching KF in [10], we propose a

state estimation algorithm which suppresses the effect of

inaccurate observation value against an estimation result.

Secondly, by using an imputation method with an estimated

observation value, we propose an estimation algorithm for

the compensation problem of intermittent observation. Fi-

nally we show experimental results to analyze effectiveness

of these proposed methods.

In the following section, we first describe the problem

formulation, and define the model of the sensor and the plant

which is the controlled object. Then we explain about the

detail of two fault-tolerant problems which we consider in

this paper. Next, we propose and analyze the fault detection

switching algorithm and the compensation algorithm for

the intermittent observation respectively. Finally we show

the experimental setup and outcome of the experiment, and

discuss an effectiveness of the proposed methods.

II. PROBLEM FORMULATION

A. Plant and Sensor Nodes

We consider the feedback control system via a sensor

network for dynamic target tracking and guidance in Fig.1.
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Fig. 1. Problem Formulation
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Assume that there exist N1 plants (N1 ≥ 1) and N2

sensor nodes (N2 ≥ 2), each of which is given by following

equations (1), (2).

xi
k+1 = Axi

k + Bui
k + wi

k i = 1, . . . , N1 (1)

where xi
k ∈ R

n is a state of ith plant, ui
k ∈ R

r is a control

signal of ith plant, wi
k ∈ R

n is a process noise assumed to

be white Gaussian noise with variance W i ≥ 0.

y
ji
k = C

ji
k xi

k + D
ji
k v

j
k + F

j
kg

j
k j = 1, . . . , N2 (2)

where y
ji
k ∈ R

m is a measurement output of jth sensor

node, v
j
k ∈ R

p is a measurement noise assumed to be

white Gaussian noise with variance V j ≥ 0 respectively.

We assume each sensor j can observe only one plant’s

state xi
k in every time step. Additionally, D

ji
k := Dj(xi

k) ∈
R

m×p is a state dependent function( [11]) which depends

on distance between the jth sensor node and ith plant, and

F
j
k ∈ R

m×n, g
j
k ∈ R

n is a random failure signal generated by

malfunction of the sensor. If it becomes F
j
kg

j
k > 0, the jth

sensor becomes faulty by having a bias on the measurement

output y
ji
k . Now we assume (1) and (2) satisfy following

assumptions 1-3.

Assumption 1:

i) E{vj
kvjT

s } = E{wi
kwiT

s } = 0 (k 6= s)

ii) E{vj
kwiT

k } = 0, E{gj
kwiT

k } = 0, E{gj
kv

jT
k } = 0

iii) E{xi
0w

iT
k } = 0, E{xi

0v
jT
k } = 0, E{xi

0g
jT
k } = 0

iv) E{wi
kwiT

k } = W i
k > 0, E{vj

kv
jT
k } = V

j
k > 0 ,

E{[gj
k − E(gj

k)][gjT
k − E(gj

k)]} = G
j
k ≥ 0

Assumption 2: (A,W
1

2 ) is reachable.

Assumption 3: (Cj
k, A) is detectable.

where xi
0 is a initial state of the ith plant. This system uses

the following state feedback as a control input.

ui
k = Lx̂

ji

k|k (3)

where x̂
ji

k|k ∈ R
n is an estimate of the ith plant computed

by the sensor node j, and L ∈ R
r×n is a feedback gain that

had been previously calculated by solving the LQG control

problem.

B. Definition of Fault Tolerance Problems

In this paper, we define two types of fault tolerance

problems as follows

Problem 1: Under the assumptions 1-3 are held, and the

output of each sensor is given by equation (2) at time step k,

then detect the sensor which satisfied F
j
kg

j
k > 0 and find the

state estimation algorithm to minimize the effect of sensor

failure by excluding the observation of the faulty sensor.

Problem 2: Under the assumptions 1, 2 are held, and the

jth sensor’s output y
ji
k becomes intermittent, then estimate

an observation ŷ
ji
k to satisfy the assumption 3 and find the

state estimation algorithm to reduce the effect of intermittent

observation.

The Problem 1 assumes a case that jth sensor has a less

accurate observation output in time step k. And the Problem

2 assumes a case that there is no jth sensor observation

output in time step k. In next section, we propose estimation

algorithms based on KF to solve the Problem 1 and 2

respectively.

III. FAULT DETECTION & COMPENSATION FOR

INTERMITTENT OBSERVATION

A. Fault-Detection Switching

To solve the Problem 1 on dynamically, first we propose

a Fault-Evaluation matrix M
ji
k to detect the failure signal

F
j
kg

j
k in equation (2).

When we consider estimation process in time step k, we

define sensor nodes which sent the control signal to the plant

at previous time step k−1 as j
f
k−1 = j0

k . Assume that P
j0i

k|k−1,

x̂
j0i

k|k−1 are predicted estimate values computed by j0
k in time

step k − 1, then the estimation algorithm of the sensor j0
k

can be written as by following equations.

x̂
j0i

k+1|k = Ax̂
j0i

k|k + Bu
j0i
k

x̂
j0i

k|k = x̂
j0i

k|k−1 + γ
j0i
k K

j0i
k {ỹj0i

k }

ỹ
j0i
k = y

j0i
k − C

j0i
k x̂

j0i

k|k−1 (4)

P
j0i

k+1|k = AP
j0i

k|kAT + Wk

P
j0i

k|k = P
j0i

k|k−1 − γ
j0i
k K

j0i
k C

j0i
k P

j0i

k|k−1 (5)

K
j0i
k = P

j0i

k|k−1C
j0iT
k {Sj0i

k }−1

S
j0i
k = cov(ỹj0i

k ) (6)

The above equations (4)-(6) are based on the switching

KF estimation algorithm proposed in the paper [10], and

these state estimation process are switched dynamically by

the switching parameter γ
j0i
k ∈ R

1. If γ
j0i
k = 1, the

above estimation algorithm works as a standard KF, and if

γ
j0i
k = 0, the obtained estimation results at time step k are

independent of the sensor j0’s observation. In the paper [10],

γ
j0i
k was switched in random order by stochastic variable,

Hence it is not the problem of determining the reliability

of the sensor observations. Thus, in this paper, we propose

a novel switching rule by using the Fault-Evaluation matrix

to establish an estimation algorithm which depends on the

results of sensor fault detection. When the sensor j0 observes

the i th plant at time step k, to determine the reliability of

this observation, we define the Fault-evaluation matrix M
ji
k

as following.

Fault-Evaluation Matrix

M
j0i
k :=S

j0i
k −C

j0i
k P

j0i

k|k−1C
j0iT
k −D̂

j0i
k V̂

j0i
k D̂

j0iT
k

= D
j0i
k V

j0i
k D

j0iT
k −D̂

j0i
k V̂

j0i
k D̂

j0iT
k +F

j0

k G
j0

k F
j0T
k

+ E{Cj0i
k ηj0i(gj0T

k F
j0T
k − E[gj0T

k F
j0T
k ])

− E[Cj0i
k ηj0i](gj0T

k F
j0T
k −E[gj0T

k F
j0T
k ])}

+ E{F j0

k g
j0

k (ηj0iT C
j0iT
k − E[ηj0iT C

j0iT
k ])

− E[F j0

k g
j0

k ](ηj0iT C
j0iT
k −E[ηj0iT C

j0iT
k ])} (7)
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where ηj0i := xi
k − x̂

j0i

k|k−1is an estimate error of the

sensor j0, D̂
j0i
k := D

j0i
k (x̂j0i

k|k−1) is a estimation of the state

dependent function. And V̂
j0i
k is a covariance of an estimated

noise v̂
j0i
k which is assumed to be white Gaussian noise.

Excluding the measurement noise covariance and its es-

timated value, the equation (7) is consist of failure signal’s

covariance and correlations with other parameters and F
j
kg

j
k.

If there is not sensor fault(F
j
kg

j
k = 0), the estimate error

covariance in (5) converges to a finite value under the

assumption 1-3. Then convergence of xi
k − x̂

j0i

k|k−1 means a

convergence of D
j0i
k V

j0i
k D

j0iT
k −D̂

j0i
k V̂

j0i
k D̂

j0iT
k , where each

state dependent function D
j0i
k , D̂

j0i
k is based on xi

k, x̂
j0i

k|k−1
respectively. On the other hand, if there is a sensor fault,

the value of M
j0i
k is changed depending on the presence of

F
j0

k G
j0

k F
j0T
k . We detect dynamically the failure signal F

j
kg

j
k

in sensor j0
k by using this Fault-Evaluation matrix M

j0i
k .

And furthermore, based on this detection result, the obtained

estimation results at time step k become independent of

the sensor j0’s observation. Here, in order to suppress the

reference of observed value y
j0i
k including the failure, we

propose the switching-rule for γ
j0i
k as follows.

Fault-Detection Switching

γ
j0i
k :=

{

1 if Mmin≤ traceM
j0i
k ≤ Mmax

0 otherwise
(8)

where Mmin , Mmax are the thresholds for determining the

magnitude of acceptable fault. In this paper, we have pre-set

these thresholds offline. But if there exists fault detection

result at previous time step k − 1, we can also choose

Mmin , Mmax dynamically by referring M
j0i
k−1. Then

the Fault-evaluation matrix and the switching-rule satisfy

following properties.

Property 1: When we can assume that the ith plant’s

state xi
k and estimate x̂

j0i

k|k−1 are both uncorrelated with

the sensor’s failure signal g
j0

k , the inequality M1
k ≤ M2

k

is satisfied under the relation F 1
k G

j0

k F 1T
k ≤ F 2

k G
j0

k F 2T
k .

Proof: The estimation result was uncorrelated with

effect of failure signal at previous time step by using our pro-

posed fault detection, thus we can assume xi
k, x̂

j0i

k|k−1 is in-

dependent of g
j0

k . If this deuncorrelation is held, the equation

(7) is simplified as (9). In the equation (9), F
j0

k G
j0

k F
j0T
k ≥ 0

is the only parameter which depends on the sensor fault.

Hence magnitude relation of the Fault-evaluation matrices is

equivalent to the magnitude relation of failure signals.

M
j0i
k = S

j0i
k −C

j0i
k P

j0i

k|k−1C
j0iT
k −D̂

j0i
k V̂

j0i
k D̂

j0iT
k

= D
j0i
k V

j0i
k D

j0iT
k −D̂

j0i
k V̂

j0i
k D̂

j0iT
k

+ F
j0

k G
j0

k F
j0T
k (9)

Property 2: When the sensor j0
k has a sensor fault in the

observation, the estimation error covariance in equation (5) is

larger than the covariance in equation (10) and an inequality

P̄
j0i

k|k ≤ P
j0i

k|k is satisfied.

P̄
j0i

k|k = P
j0i

k|k−1 − K
j0i
k C

j0i
k P

j0i

k|k−1 (10)

Proof: When we use the switching KF and the switch-

ing parameter satisfies γ
j0i
k = 0 by fault detection, we can

see the relation P
j0i

k|k = P
j0i

k|k−1 by 5). In this case, the

estimation error covariance becomes monotone increasing

over time. Then if the failure signal in j0
k continues to

obstruct a measurement, P
j0i

k+1|k becomes divergence as k →
∞. In contrast, the case using a standard KF and holding

the assumption 3, the estimation algorithm satisfies P̄
j0i

k|k <

P
j0i

k|k−1. Therefore, even if F
j
kg

j
k continues to obstruct, the

estimation error covariance becomes finite over time.

y
j0i
k = C

j0i
k xi

k+D
j0i
k v

j0

k +F
j0

k g
j0

k

; F
j0

k g
j0

k (F j0

k g
j0

k ≫C
j0i
k xi

k+D
j0i
k v

j0

k ) (11)

B. Compensation for Intermittent Observation

In the previous section, we proposed the estimation algo-

rithm with dynamic fault detection by using Fault-evaluation

matrix and excluding faulty sensor. Our next attention is

compensation for estimation result for the case there is no

sensor observation available. Such compensation problem

can be expressed as the Problem 2 described above. Under

a setting of the Problem 2, if we use standard KF for

the sensor j0, the estimation result is not updated, hence

P
j0i

k|k = P
j0i

k|k−1. Against this method, to solve the Problem

2, we propose the following estimation algorithm.

Estimation Algorithm with Compensation

P
j0i

k|k := {(P j0i

k|k−1)
−1

+ α−2
k C

j0iT
k (D̂j0iV̂

j0i
k D̂j0iT )−1C

j0i
k }−1 (12)

K
j0i
k := P

j0i

k|k−1C
j0iT
k

× {Cj0i
k P

j0i

k|k−1C
j0iT
k +α2

kD̂j0iV̂
j0i
k D̂j0iT }−1 (13)

The equation (12) shows compensation by estimation

D̂
j0i
k V̂

j0i
k D̂

j0iT
k for missing observation noise covariance

Dj0iV
j0i
k Dj0iT , and equation (14) shows a state estimated

value corresponding to the covariance in equation (12).

x̂
j0i

k|k = x̂
j0i

k|k−1 + K
j0i
k (˜̂yj0i

k + l
j0i
k ) (14)

ŷ
j0i
k = C

j0i
k x̂

j0i

k|k−1 + D̂
j0i
k v̂

j0i
k ,

˜̂yj0i
k = C

j0i
k xi

k − ŷ
j0i
k (15)

l
j0i
k = (1+αk)D̂j0iv̂

j0i
k −E{Cj0i

k (xi
k − x̂

j0i

k|k−1)} (16)
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The equation (14) shows update of the state estimated value

x̂
j0i

k|k−1 by estimated measurement output ŷ
j0i
k and αk ∈ R

1

in (16) is a monotonically increasing function over time.

αk = ǫαk−1 , ǫ > 1 (17)

Then the estimate error covariance in (12) satisfies following

theorem 1.

Theorem 1: When sensor j0
k can’t get any measurement

output y0
k at time step k, P

j0i

k|k and P
j0i

k|k−1 satisfy inequality

relation P
j0i

k|k ≤ P
j0i

k|k−1, where P
j0i

k|k which is computed by

proposed compensation method, P
j0i

k|k−1 which has not been

updated since the previous time k − 1. Additionally, P
j0i

k|k =

P
j0i

k|k−1 is held under the persistent lack of observations.

Proof: We can easily see the P
j0i

k|k ≤ P
j0i

k|k−1 because

there is a constraint about noise D̂
j0i
k V̂

j0i
k D̂

j0iT
k > 0 in (12).

But if the persistent lack of observations occurs, we get the

relation α → ∞ over the time. And because the second

term in (12) converges to zero, as a result, the estimation

error covariance P
j0i

k|k is equal to P
j0i

k|k−1.

Next, we would like to describe about the derivation of the

estimate value of observational error C
j0i
k xi

k − ŷ
j0i
k in (14).

At first, we need to compute ±(˜̂yj0i
k −E[˜̂yj0i

k ]) by using the

equation (18).

cov(˜̂yj0i
k ) = C

j0i
k P

j0i

k|k−1C
j0iT
k +D̂

j0i
k V̂

j0i
k D̂

j0iT
k

= E{(˜̂yj0i
k −E[˜̂yj0i

k ])(˜̂yj0i
k −E[˜̂yj0i

k ])T } (18)

Then, to compute an estimate value which is nearly equal to

the true observational error ỹ
j0i
k , we define the parameter βk

as following (20).

cov{ỹj0i
k − (˜̂yj0i

k − E[˜̂yj0i
k ] + βk)}

= cov{Dj0iv
j0i
k +D̂

j0i
k v̂

j0i
k +E[˜̂yj0i

k ]−βk} (19)

βk : = (1 + αk)D̂j0iv̂
j0i
k + E[Cj0i

k x̂
j0i

k|k−1 − ŷ
j0i
k ](20)

The parameter βk depends on αk, and we can adjust reli-

ability of estimated measurement noise covariance by this

parameter tuning. By using the result of (18) and (20),

we can choose the estimate value of observational error as

the equation (21). And (21) shows that the estimate value

of observational error is consist of the estimate value of

observation and the average estimated error.

˜̂yj0i
k − E[˜̂yj0i

k ]+βk

= ˜̂yj0i
k +(1+αk)D̂j0iv̂

j0i
k −E[Cj0i

k ηj0i]

= ˜̂yj0i
k +l

j0i
k (21)

C. Neighbor Discovery Algorithm

Next, we would like to explain about sensor scheduling

algorithm. Usually, there is limitations of sensor’s commu-

nication distance and constraints of electric power consump-

tion. Hence, to navigate each plant dynamically by feedback

control and also to cut power consumption, we have to

choose sensors which are appropriate for sending control

input to each target. In this paper, we propose Neighbor

Discovery algorithm to achieve efficient sensor scheduling

and restructuring of network in [12], [13]. When we use

Neighbor Discovery algorithm for targets state estimation

and scheduling sensors , whole process can be described as

following.

Sensor Scheduling by Neighbor Discovery Algorithm

i) At time step k, we define the sensor j0
k , and assume

that j0
k sent control input to the ith plant in the previous

time step k − 1.

ii) j0
k runs the fault detection based on Fault-evaluation

matrix M
j0i
k , and estimate the state of ith plant by

using switching KF in (5).

iii) j0
k sends the estimation result P

j0i

k|k−1, P
j0i

k|k , P
j0i

k+1|k,

x̂
j0i

k|k−1, x̂
j0i

k|k to other sensor jk within the radius r
j0

k

(refer Fig. 2).

iv) Each sensor jn
k which received information from j0

k

selects one target by comparing P
j0i

k|k−1 . Then, if jn
k

selects ith plant as target, jn
k gets measurement output

y
jni
k .

v) jn
k runs fault detection, state estimation and sends

or receives information x̂
jni

k|k−1, P
jni

k|k−1, x̂
jni

k|k , P
ji

k|k,

P
jni

k+1|k in the vicinity of jn
k .

vi) By comparing P
jni

k+1|k, each jn
k selects j∗k as the sensor

with optimal estimation accuracy in the information

sharing group.

vii) j∗k sends the control input u
j∗i
k and P

j∗i

k+1|k to the plant.

viii) If the ith plant can’t receive the control input, estimates

itself based on compensation for intermittent observa-

tion in (12).

ix) We redefine the sensor j∗k as j0
k+1, and repeat whole

process in the next time step (refer Fig. 3).

Plant

jk

rk

lk

Dj
k

Dj
k

jk

jk

dom(rk)

jk
0

Fig. 2. Neighbor Discovery Strategy

0

Control Input
jk+1

0

jkjk
jk

Fig. 3. Network Update

This algorithm works as guidance control by selecting

optimal control input which minimize the estimated error

covariance P
j∗i

k+1|k = minj P , where P is the set of each sen-

sor’s {P jni

k+1|k ({P j1i

k+1|k, P
j2i

k+1|k, . . . , {P jni

k+1|k} ∈ P). Each

{P jni

k+1|k is computed by sensors which exist near the ith

plant. In this paper, we proposed the estimation algorithm

only based on each sensor’s KF . But if we are allowed to
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use DKF based on information exchange between sensors,

it becomes possible to assist a fault sensor’s estimation by

sharing correct observation data with other sensors. The

communication distance r
j0

k of each sensor j0
k depends on

the estimated distance d
ji
k between j0

k and the ith plant.

rmax ≥ r
j0

k = δd
ji
k , δ > 1 (22)

Equation (22) shows that the communication radius r
j0

k is

longer than the distance d
ji
k and smaller than the upper bound

rmax.

IV. VERIFICATION BY EXPERIMENT

In this section, we would like to show the effectiveness of

our proposal algorithms. First, we describe the experimental

environment of the verification as in Fig.4.

Transmitter

Computer
Camera

Sensors
DS1104

PicPort-color

Vehicle

Halcon

Fig. 4. Experimental System

We used a two-wheeled vehicle as the controlled target

plant(N1 = 1). The two-wheeled vehicle has a nonholonomic

constraint. However this vehicle can be defined as following

framework like as (1) via virtual structure for feedback

linearization [13], [14]. Assuming that the state of the plant

is described as xk = [ xk yk ẋk ẏk ]T , then A and B are given

by the following.

A =









1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1









, B =




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

T 2

2 0

0 T 2

2
T 0
0 T
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



(23)

where, T = 0.1[s] is the sampling time, and the covariance

of process noise is assumed to Q = 1 × 10−3I4. In this

experiment, we used nine sensor nodes (N2 = 9) to observe

and navigate the target plant. Each sensor was placed on the

2D field and the position X-Y coordinate of each sensor was

the following ζj = (X j ,Yj).
ζ1 = (0, 0), ζ2 = (0, 0.5), ζ3 = (0, 1.0)
ζ4 = (1.0, 0), ζ5 = (1.0, 0.5), ζ6 = (1.0, 1.0)
ζ7 = (2.0, 0), ζ8 = (2.0, 0.5), ζ9 = (2.0, 1.0) (24)

Additionally, the covariance matrixes of measurement noises
V j and measurement matrixes C

ji
k are assumed to be as the

following, respectively.

C
ji
k =

[

1 1 1 1
]

, (j = 1 , . . . , 9) (25)

V j = diag{0.8, 1.4, 0.0045, 0.0045} (26)

Each measurement output is calculated from the image of

a CCD camera which was mounted above the vehicle as

shown in Fig.4. The video signals are acquired by a frame

grabber board PicPort-color, then the image processing soft-

ware HALCON generates nine measurements. Consequently,

virtual nine sensor nodes and measurement noises have

been presented on the computer [14]. We employ DS1104

(dSPACE Inc.) as a real-time calculating environment for

an estimation and sensor scheduling. We set up model

parameters of the state dependent function D
ji
k := Dj(xi

k)
in the following assumption 4.

Assumption 4: The state dependent function D
ji
k :=

Dj(xi
k) can be expressed as the following.

D
ji
k =







0.1+2‖ x
i
k−X j ‖ 0 0 0

0 0.1+2‖ y
i
k−Yj ‖ 0 0

0 0 1 0

0 0 0 1






(27)

A. Fault-Detection Switching

We show experimental results for verification of our two

proposed algorithms. Here, maximal communication radius

rmax = 1.0 is a communication constraint. We set up the

initial state of the target plant as x0 = [1.4 0.7 0 0] T and the

initial estimation error covariance matrix as P0 = 0.1 × I .

First, Fig.5 shows the trajectory of the target moving to the

desired value (x, y) = (0, 0). Each Fig.7, 8 shows an effect

of the fault signal (Fig.6) against the sensor 1’s estimation.

The sensor 1 observed the target’s movement and we added

a fault signal to this sensor’s measurement output. We can

see that the fault-evaluation matrix fluctuated based on the

occurrence of the fault signal by Fig.7. Further more by

using the result of this fault-detection switching, the sensor

reflected deteriorations of measurement accuracy in estimate

accuracy as in Fig.8.
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B. Compensation for Intermittent Observation

Next, we show the result of the estimation algorithm with

compensation. We set to occur an intermittent observations

after 200 steps from the start of each sensor observation as

in Fig.9. We have been reconfigured the initial state of the

target as x0 = [1.5 1.0 0 0] T .

Fig.10 shows a comparison of the estimate error covari-

ance. Each line means the estimate accuracy of our proposed

method and conventional method respectively, and we can

see that proposed compensation method by (12) maintained

more low covariance value than conventional method which

chose P
j0i

k|k = P
j0i

k|k−1.

Fig.11 and Fig.12 show a comparison of target’s actual

trajectories and estimated trajectories, respectively. The —

line means the behaviour of the target which was based

on the control input with the compensation, and the −−
line means the behaviour which was based on the control

input without compensation. By these results, we can confirm

that the target converged more closer to the desired value

(x, y) = (0, 0) when the compensation had been performed.
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V. CONCLUSION

In this paper, first, we proposed an estimation algorithm

based on fault-detection switching. To detect fault signals, we

defined a Fault-evaluation matrix, then combined the fault

detection result with switching KF. We showed that each

sensor can suppresses the effect of inaccurate observation

value against the estimation result. Consequently, sensors

were able to reflect deteriorations of measurement accuracy

in estimate accuracy.

Secondly, we discussed about the compensation problem,

and to maintain a low covariance value under intermittent

observation, we proposed an estimation algorithm based on

an imputation method by using an estimated observation

value.

Finally we showed experimental results to analyze effec-

tiveness of these proposed methods.
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