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Cooperative Control Based on Force-Reflection with Four-channel
Teleoperation System

Nam Duc Do and Toru Namerikawa

Abstract— This paper focuses on a new Force-Reflection (FR)
algorithm based on input-to-state stability (ISS) small gain
theorem in cooperative work of Single Master-Multiple Slave
(SMMS) teleoperation system with time varying communication
delay. In this work, we propose a new position tracking control
for object grasping and a new FR algorithm based on a PD
control to transfer the positions, velocities and force information
between both sides of teleoperation. The goals of these methods
are to achieve the secure grasping by multiple slave robots and
improve the tracking performance of the cooperation SMMS
teleoperation system. To analyze stability of the system, the ISS
small gain approach is used to show the overall force-reflecting
teleoperation to be input-to-state stable. Several experimental
results show the effectiveness of our proposed method.

I. INTRODUCTION

Teleoperation systems allow person to extend their sense
and manipulation capabilities to remote place. In general,
slave robot can perform some real tasks at the remote
place by controller signals that send from the master side.
In bilateral control, contact information will feedback to
the master side, this information is necessary to improve
the manipulation capability [1]. One absolutely unsolved
problem of the control of teleoperation system is time
delay in communication line. The delay may destabilize
and deteriorate the transparency of the teleoperation system.
Therefore, it is necessary to design a control law to guarantee
the stability of the system under communication delays.

Up to now, many successful control schemes have been
proposed for the teleoperation system with single master
single slave (SMSS). However, the teleoperation systems
with multirobot are relative rare. Some control methods were
proposed by [2], [3], [4] for the system with multiple master
multiple slave (MMMS). In this system, one human can
control one slave robot to perform separate operation in a
cooperative task, thus the system may demand a large of
number of human operators if the task requires many slave
robots. In the works of [5], [6], [7] the single master multiple
slave (SMMS) systems were considered, but these control
methods were only proposed for the motion coordination.

Many surveys concern the motion and force control prob-
lems of SMSS system, however it is relative rare with
SMMS system, especially in case of contact between the
grasping object and the environment. When contact occurs,
the arising forces will be dictated by the dynamic balancing
of two coupled systems, the cooperative slave robots and
the environment. In addition, to improve the transparency
of SMSS bilateral teleoperation with communication delays,
a Force-Reflection (FR) scheme was addressed by [10], a
stabilization scheme for force reflecting teleoperation was
introduced.

In this paper, we propose a novel cooperative control
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method of the SMMS system with four-channel force re-
flection based on ISS small gain theorem. This method is
developed from one of our previous results ([12], (2010)). In
this work, the position tracking control in a cooperative task
between a master and multiple slave robots was proposed,
however the real Force-Reflection has not been treat. In
this paper, we propose using two forward and backward
forces to transfer the force information from both sides of
teleoperation, it makes a four-channel FR algorithm under
time varying delay in the communication lines. The goal
of our control method is to guarantee the overall stability,
the master and slave spacing zero errors achievement and
the stability of reflecting force when the interaction occurs.
In addition, we also assume using an individual gain for
a different structure of the master and the slave robots. In
the independent design, a scaling power can be set to both
sides of teleoperation. To improve the stability analysis of
our previous work [12], the ISS small gain approach is used
to show the overall FR teleoperation system to be input-
to-state stable, we also can see the result by [13]. In the
experiment, two slave robots hold and carry one object to
one desired position following the control signals that send
from the master side. The results of experiment show the
effectiveness of our proposed control technique.

II. PROBLEM FORMULATION

A. Dynamics of Teleoperation System

In this section, the dynamics of the SMMS system which
is composed by one master and N slave robots can be shown
by a motion equation of a general robot arm. The dynamics
of the master with m-DOF and the dynamics of the ¢ slave
with n;-DOF are shown as follows:

{ M (qm)Gm + Crm(@m, Gm)dm = Tm + Jg;(qm)FDP 1)
Mi(g:)Gi + Cilgi, 4:)di = 7i + J] (a:) Fy
where the subscript “m” denotes the master and the subscript
“;” denotes the order indexes of the slave; g,, € R™*!, ¢; €
R™*1 are the joint angle vectors; 7, € R™*! 1, €
Rmi*1 are the input torque vectors; F,, € R™*! is the
operational force vector; F; € R™*! are the grasping force
vectors; M, € R™*™ M,; € R™*™ are the symmetric
and positive definite inertia matrices; Co,(Gm,Gm)Gm €
R™, Ci(qi,¢:)g; € R™ are the centripetal and Coriolis
torque vectors; Jp,(gm) € R™ ™, Ji(q;) € R™*™ are
Jacobian matrices.

In this paper, we propose a control law for different
structural teleoperation. The master and slave robot dynamics
are written directly in the task space as:

Tr(t) = Jik(qr)dr(t), k=m, i. (2)
by further differentiation of (2) as:
(1) = Ji(gr)in(t) + Jr(gr)di(t), k=m, i. (3)

where @, &m € R™*! and #;, &; € R™*! are the
end-effector velocities and acceleration vectors, respectively.
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Substituting (2) and (3) into (1), we can get the dynamics as
follows: ~
My, (%n)jm + Cm(QWm Qm)j:m = J;LTTm + Fop 4

M;(q:)#; + Ci(gi, @) = J7 T + F (5)

where: My, = J, "My J; b O = J, T {Cp — My J, Iy}
J,;l, (k = m, i), z; is end-effector of each slave robot
in Cartesian coordinate system of multiple slaves. Let us
denote the total degree of freedom of the N slave robots
by: n = va n;, hence the group dynamics of the N slave
robots can be rewritten as:

M(q)i +Clq, )i =7+ F 6)

where 2 = [27,..., 287 ¢ R*, v = [fJ7T,...,
Iy e R F = [FL,...,FE" € R", and
M(q) = diag[Mi(q1), ..., Mn(qn)] € R™", C(q,4) =
diag[C1(q1,¢1),---, Cn(gn,qdn)] € R™ ™ are the inertia
matrices and Coriolis matrices, respectively.

In teleoperation, the signals are transferred between both
sides of master and slave. Communication delay is assumed
as follows:

Assumption 1: Both time varying delay T, (t) and Ti(t)
are continuously differentiable functions and possibly
bounded as:

0 < T(t) <T) < oo, [Th(t)] <1, h=m,s (7)

where T,f € R is upper bounds of the communication
delays.

In this paper, the remote environment is assumed to be a
simple spring-damper system with constant parameter. This
system is as a perturbed system described by the equations
below in the form of input-to-state stability properties:

jf‘e :Fenv(taxevva‘i‘L)+ge(taxe;xL;j:L) (8)
FL - Fenv(tvxemevftL)

where . € R" is a position of the environment, x; and
#;, € R™¥! are the position and velocity vectors of the
cooperative-slave robots in Locked-System (this system will
be presented in Section III); F, is the environment force.
We assume that Fep,(t, Te,n,21)s Leno(t, e, 21, E1)
are piecewise continuous in ¢t and locally Lipschitz in
Ze, xr, Zr. The input (z1(t),4r(t)) is a piecewise con-
tinuous and essentially bounded function of ¢ for all ¢t > 0;
ge(t, Te,xp, &1,) is the perturbation term. The environment
satisfies following assumptions:

Assumption 2: The cooperative-slave contacts with fol-
lowing spring-damper environment with constant parameter

Fenv(tvxevvaiL) S ‘xel + a|i:L| + b|xL| (9)

holds for all ¢ > 0; a, b are constant parameters (a, b > 0).

Assumption 3: Let . = 0 be a uniformly asymptotically
stable equilibrium point of the nominal system (8). There
exists a Lyapunov function of the nominal system such that
a1e(|ze]) < Ve(ze) < age(|ze]) holds for all z, € R™,
and V., = 0 while x. = 0. The time derivative of V, along
trajectories of (8) satisfies:

Ve
Ox
where aqe(|ze|), age(|z.|) are class K functions and ag, >

0. The perturbation g.(t,x.,xr,%r) in (10) satisfies the
uniform bound:

Ve(t) < —aelae)® + g(t,xe,xr, i) (10)

ge(t, ey 2r, 21)| < dauelre] < Fisc(t) (1)

ox

for almost all ¢ > 0 and € R™, age > 0, and ¢ is a
perturbation gain.

Let us define: Se(t) = dp(t) + Aenvar (t)

5

(12)

where A, € R"*"™ is a positive diagonal gain matrix.
Note the first bound of the perturbation in (11), we have:

‘./e S _a3€|xe|2 + 9€a36|w€‘2 - GeaSe‘xelz + 5a4e‘xe‘

_(1 - 0€)a3€|x€|2 - |xe|(eea3e|xe| - 6a4e)
5a4e

IA

_(1 - 0€)a36|x6|2; v‘xe‘ Z

(13)
ett3e
where 6. is some positive constant, 6, < 1.
Therefore, the upper bound of perturbation in (11) satisfies
the time derivative of V, as follows:

Vo(t) < —ase|we|® + FLse(t) (14)

B. Control Objectives

In this paper, we would like to design a control law for
SMMS system to satisfy following Control Objectives.

Control Objective 1: (Autonomously grasping by multi-
ple slave robots) In this work, the grasping achievement
following condition:

rs = 1% (15)
where xg € R"™"™ is relative position of the end-effectors
of the slaves, a:g € R™"™™ is a desired position of xg.

Control Objective 2: (Movement of grasped object)
When the grasping is achieved, the movement of the
grasped object is achieved as:

T =T, (16)
where x;, = axrg — C, xr9 € R™ and z,, are the center
position of the slave end-effectors and the position of the
master, respectively; o« € R is the position scale, C' € R™
is shown as a translation value.

Control Objective 3: (Static force reflection) The teleop-
eration with static force reflection is achieved as ©; = &; =
0(j = m, L) such that:

F op = —BFL,

where F7, is the contact force of cooperative-slave, 3 > 0 €
R is a positive scalar and it expresses a force scaling factor.

a7)

III. CONTROL DESIGN

In this section, we propose a novel control law for the
SMMS system to achieve above Control Objectives.

A. Passive-Decomposition

First, base on Passive-Decomposition that was introduced
by [8], the dynamic of multiple slave robots is decomposed
into two decoupled systems: the Shape-System describing
“movement of the multiple slaves with grasping object” and
the Locked-System describing “movement of the multiple
slaves according to the instruction from the master”.

Utilizing the Passive-Decomposition, the velocity of mul-
tiple slave robots is rewritten with each system as follows:

. —1|Ts

p=571 |78 (18)
where ©g € R™™ "™ is relative velocity of the end-effectors of
the slaves in the Shape-System and x;, € R™ is the velocity
the Locked-System. S is the non-singular decomposition
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matrix. In the following formula of S_TMS_l, the non-
diagonal terms become zeros as:
—Taro—1 _ MS 0
STEMST = [ 0 M, (19)
where Mg € RM—m)x(n=m) pr e RMXM are inertia
matrices of the Shape and Locked systems, respectively.
In addition, a local compensation of impedance shaping is
necessary. We have relationships of the forces as follows:

2= ) )= )

where F; and F5 are forces in each end-effector of slave
robot that exert on grasping object. We define:

Cs Csp| _ q-r779 o “TAa-1
[CLS CL]_S MZ(S71) +577CS

note (6), the Passive-Decomposition form is written as:
Ms(q)is + Cs(q,q)is +Csrlq, Q)i =7s + Fs  (22)
Mp(q)ir + Cr(q,q)&L + Crs(q,4)ts = 70 + Fr  (23)

Above dynamic equations include friction terms C's7,(q, §)
2y, and Crs(q, )2 5. However, ignore the remote control by
the human, decoupling of the Shape-System and the Locked-
System is desired for the slave that maybe autonomous
grasping. Therefore, the decoupling control inputs are given

as follows: 75 = Csr(q, )aL + Tg (24)

71 = Crs(q,d)ds + 77, (25)
where Té, T/L are new control inputs. Substituting (24), (25)
into (22), (23), we get:

Ms(q)is + Cs(q,q)is = 75 + Fs

My (q)ir + Cr(g, ¢)ir =7 + F1
hence, two above dynamics become a decoupling.
Some properties of this SMMS system are given as
follows:

Property 1: M;(q)(: = S,L) is a positive symmetric
matrix, and there exist some constant parameters with below
relationship as :

0 <mir <|| M; [[Smyp, [[Ci||< el 2 (28)

Property 2: M;(q) — 2Ci(q,q4) (i = S,L) are skew-
symmetric matrices. o

Property 3: &;,%; (i = S, L) are bounded and M;, C; are
also bounded.

Properties 1~3 denote the feature of motion equation of
normal robots. The following assumption is from (1), (26),
(27) as follows:

Assumption 4: The operator and the environment can be
modeled as passive systems, where the velocities &,,, £, are
system inputs and bounded, the force F,,, Ff, are system
outputs, respectively. Moreover, these forces are bounded by
the functions of the velocities of the master and the Locked-
System. The velocities x,,, @1, also equal to zero for ¢ < 0.

(20)

2L

(26)
27)

B. Proposal Control Law

Concerning the control law of the Shape-System (26), the
Control Objective of this system is: xg = x%, then the
position tracking with this control law is proposed as follows:

T =Ms{E%(t) — K5 (s — &%(t) — KJ (zs — 25(1))}

+ Csis — Fs (29)

Substituting (29) into (26) we obtain the following closed-
loop systems:

E+Kje+Kje=0, e=us—a} (30)

where K f , KS are positive definite diagonal gain matrices.

Considering the coupling control of the master and the

Locked-System. Note the Control Objectives 2 and 3, the
cooperative control law is defined as follows:

T = Jn{—K§'il — Kol — (1= K7)Fop

— Kp BFL(t —Ts(t))}
7L = —Kial — Kfal + KEB™ Foplt — T (1))
; ; — (14 K§)Fr (32)

where j:;”/ s :17;"/ are the position and velocity errors of
master and cooperative slave robots;  is force scaling factor;

T (t) and T,(t) are assumed to be time varying delays.
Similar to the exerted and contact forces, the following

signals EpyL(t) = Ty (E — Trys(t)), Zém/L(t)

= jjnL/L(tf .

€2V

Tm/s(t))T’m/s(t);

Fop = Fop(t — Tin(t)), Fr = Fr(t — Ts(t)) (33)

are available for the controller on both sides of teleoperation.
We define:

(34)

Substituting above control law (31), (32) into the Locked-
System (27) and dynamic equation of the master (4), we
obtain a closed-loop system as follows:

Ty, =T — T, Tg =T — Tm

MM(qm)im‘f’ém(Qm’qm)im =
—~ K@l — Ky'al' + Kit (Fop — BFL)
Mp(q)iL+Cr(g, Q)ir =
- Kiig — Kyag + Ki (87 Fop — FL)  (36)

(35)

where K7, K7 and K7, (j = m, L) are gains and defined
as follows: K&id’F) = k:mK(p,d,F); K(Lp,d,F) =k Kp.a,r)
where K, g ) € R"*™ are positive definite diagonal control
gain matrices; k,, > 0,k > 0 are constant gains of scalar
that designed separately on the master and the slave side
(Fig. 1).
IV. STABILITY ANALYSIS

A. Stability of Shape-System

The below theorem concerns the Shape-System.

Theorem 1: Consider the closed-loop Shape-System (30),
desired value of relative position of spaces between the slave

robots is conversed as follows:
d

e=2s—2g—0 ast— o0 37
Proof. The equation (30) can be rewritten as follows:
é e 0 I
(ol o-[ke ke] o

where K3, K g are positive diagonal matrices, eigenvalues
of ¢ become negative, therefore following errors of position
and velocity are achieved:
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(39)
(40)

e:xsfx‘éﬂO as t— oo
é::'vgfi‘é%() as t— oo

it means the Control Objective 1 is achieved and the au-
tonomous grasping of multiple slaves is also achieved.

B. Stability of Locked-System

This section deals with the stability of the overall teleop-
eration system that includes the master and the cooperative
slave subsystems of Locked-System.

Lemma 1: Consider the closed-loop master subsystem to
be a piecewise continuous in ¢ and locally Lipschitz in the
state 27y = (27,27)7T; the input uy, = (27,27, FT)T.
There exists a continuous differentiable, positive definite,
radially unbounded Lyapunov function V,,,:R" — R of the
subsystem that satisfies the inequalities:

aam(|2nm]) < Vi < azm(|zn]) (41)
OV OV
ot + . (t,xar,unr) < —azm(|z]), 42)

Vlzm| = pm(lua]) >0

vt >0, D—{xMER |a:M|<rm} Du—{UJuERm
funr] < T} where @ (|2a1]), i (|2as1), agm (|z))
and p,, are class K functions, then the subsystem is locally
input-to-state stable.

Proof. First, consider an ISS-Lyapunov function candidate
as follows:

t
Vin = ko @ My + 22 K pttm — 2KF / F(€)dm (€)de
_ ’ 3)
where M,,, K,,, Kr are positive definite matrices; k,,, 3 >
0. Following the Assumption 4, the environment and the
manipulator are passive, then V,, is the positive function.
We also easily check that this function satisfies (41), and
Vi = 0 while &,, = 0, z,, = 0. Since ay,,(xp) and
aom (2 ) are radially unbounded, hence V;, is said to be
radially unbounded.
The derivative of above function along trajectories of the
system (35) with concerning Property 2 as:

Vin = — 280 Kgim + 205 Kaip, 4 220 Kpd1,
— QKFBIT FL + 2&%, OmTm —

m
= — 28T (Kg — Op)Zrn — 285 (O, —
— Kyip 4+ KpfFp) < —2iL (Kg — 0n)dm

Kalip| + Kplirn| + KpB|F

where 6,,, is some positive constant. We can choose 6,,, to
satisfy the derivative of V,,, to be negative as follows:
0 < Kgq 45)
Using the fact that, the signal i, is bounded, the feed-
back force from slave side is also bounded or the input
ups is bounded. Following the Theorem 5.2 in [14], we
can choose a class K function v, = al_WlL 0 Q2m O Pms
positive constant ki, = agﬂll(alm(rm)) and ky,, =
o (min{k1m, pm(rmy)}) for any initial state zp/(to) and
any bounded input wu (), and we can choose 7, and 7,
large enough that satisfies the inequalities given below:

2xm9mxm

Kair,
(44)

Viim|

221 (t0)] < g (@1m (7m));

Pm ( SBP ‘uj\ll) < min{ag_yi(alm(rm))a pm(rmu)} (46)
t>to

Using the Definition 5.2 in [14] we have the solution
2 (t) exists and satisfies:

(O] < pllar )t = to) + pn( sup_ furs (7).

VO <to <t A7)

where p is a class KL function. Then the solution ()
only depends on wy(7) for tg < 7 < t, and the master
subsystem is locally input-to-state stable.

Now, we consider the slave-environment interconnection
with the cooperative-slave subsystem.

Lemma 2: State of the closed- lo%p cooperatlve slave sub-
system is assumed as: J:L,xL, YT and input:
us = (2T 27, FT) . We suppose the environment dy-
namics (8) satisfy Assumptions 2 and 3. There exits a con-
tinuous differentiable, positive definite, radially unbounded
Lyapunov function V; of the subsystem that satisfies the
below inequalities:

rs =

as(lzs]) < Vs < aas(|os]) (48)
Vs OV
8£ o (t,zs,us) < —ass(|zsl) (49)

Vlzs| = ps(lus|) > 0
Vi > 0, D = {zsg € R%|zs| < rs}, Dy = {ug €
R%; lug| < rgy} where aqs(|xs|), azs(|zs|), ass(Jrs|) and
ps are class KC functions, then the subsystem is locally input-
to-state stable.
Proof. We consider the ISS-Lyapunov function candidate as
follows:

t
Ve =k e Mpir, + 2 Kpar + 2Kp / Fr (&) (€)de
0
+ Ve (50)

where V. was introduced in the Assumption 3, My, K,,, Kr
are the positive definite matrices. Similar to the master
subsystem, the first and the second term of the right-side
in (50) are radially unbounded; note that in the Assumption
3, V. satisfies the inequality (9) with any radially unbounded
a1 and awe, then Vj is also said to be radially unbounded
and satisfies the inequality (48). We also can easily check
that V5(0) = 0 while zg =0 (27 =0, 2z =0, z, =0).

The derivative of V; along the trajectories of the system
(36) with concerning Property 2 as follows:

+ 2K B iy +V, GD

Note the derivative of V. in (14) and the expressions of
F, and s. in Assumption 3, we have:

Vo < —asex? + |zl|ir — |27 | Aenozr + ad?

(52)
Applying Young’s quadratic inequality with |ATB| <

(e/2)|A|* 4+ (1/2¢)|B|* that holds for all € > 0, therefore

we can obtain the following bound of the second and third
terms in (52) as:

- b|a:€|Aem,xL + |x:£\(b — aleny)Tr,

1.
lze|Tdp < |gce|2 /\x% (53)
A AETL’U
|xe| AenvxL |.'17€|2 + .Z‘% (54)
where A is a small positive constant. If we choose a = b =
1/XA and A.,, = I, we can rewrite the derivative of the

Lyapunov function as follows:
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Vi < — i1 2Kair — (aze — %) e + 2K B T Fop
+ 20T Ky + 07 Kafim + 2010080 — 2070031
< —2@7 (Ka—01)dr — (o3e — g)|x6|2
=27 (0rdr — Kadm — Kafm — KpB~ ' Fop)  (55)

where 67, is some positive constant. We can choose the values
of A and 6, to satisfy first two terms of (55) to be negative.

We have: 0 %
L < Ig
{ Rt 56
from (55), we receive:
. . . A
Ve < — 2$€(Kd — HL)QZL - (O¢3€ - §)|$e|2 (57)
o Kalim| + Kalim| + KrB7'|F,
V|xL| > d|$ | d|$€L| Fﬁ | Pl ( :P(|US|))

Similar to the master subsystem case, note the Assumptions
1, 4 and the expression (33), we can conclude that the
slave+environment subsystem is also locally input-to-state
stable.

Based on the Lemma 1 and Lemma 2, the following
theorem concerning stability properties of the closed-loop
system is obtained.

Theorem 2: Consider the cooperative teleoperation sys-

tem (1), the FR algorithm in (31) and (32). Suppose the
environment dynamic satisfies Assumption 3, there exists
va(:) € K such that v, = ~,, o 7, implies that: for the
four-channel FR teleoperation, the overall system is input-
to-state stable.
Proof. We choose the state of the overall FR teleoperation
as: o = (25,21 2T 3T 2T)T and the output as: ur =
(QE%’;%TT,L,@%,@E,FOT,FE) . Now we can combine above
presented results and the consecutive application of the ISS
theorem. Indeed, denote by the ISS gain ¥y, —z,,1(-) € K
of the closed-loop master subsystem, whole existence is
guaranteed by Lemma 1. And also, we let vy[u5—24)(") €
K be the ISS gain of the closed-loop slave+environment
subsystem (8). Choose 5 such that the satisfying:

YA = Vup —z ] () ° A/[us—mcs](') (58)

Applying the Definition 5.2 in [14], we can conclude the
overall FR teleoperation system is input-to-state stable. The
proof is completed.

V. EVALUATION BY CONTROL EXPERIMENTS

A. Impedance Shaping

In this Ppaper, the SMMS system was constructed with two
of 2-DOF serial-link arm of slave robots. Some parameters

rg, 2%, xy, are defined as follows:

x5 =T1 — T = [ﬁ :“yf]; 2l = [gl] (59)
- ﬁf1+ﬁf2fc_g T+ T2 —C
rL=a 2 T2 [ Y1+ Y2 ] 60

where C' = [¢ 0]T is the transport value of the coordinates at
master and slave robot, « is the position scale; Z; = [z y1]7,
To = [w2 y2]T are position of the end-effector of slave robots,
respectively. From (59) and (60) we get:

j}s o i’lffg o I —I i‘l
bl I P S R e

Length 47 [em]

Diameter | 5.7 [em]

195 [g]

Fig. 2. Experimental setup Fig. 3.

Grasping object
We define the decomposition matrix S as follows:

I I
S = |« o 62
{51 2! ] ©2)

However, the non-diagonal and coupling terms between
the Shape-System and the Locked System still exist even
by using this decomposition matrix S. Thus, a linearization
technique with the impedance shaping is then introduced as:

7= JH{MH (1, + F,) — F; + Ci&;} (i=1,2) (63)

where 7, is a new control input, H is inertia matrix of device.
Therefore, the Shape-System and the Locked-System to be
decoupling, we get:

Mg 0 Ts] Tév Fs
[ 0 ML] [Q?L] - L—}J + [FL] ©

Therefore, by the definition of xg,z; mentioned above,
the Shape- System and the Locked-System are decoupling
by the impedance shaping only.

B. Experimental Setup and Results

The experimental setup is shown in Fig. 2. The remote
environment on the slave side is a hard iron global. The
cylindrical grasping object is used and shown in Fig. 3.
For implementation of the controllers and communication
lines, we utilise a dSPACE digital control system (dSPACE
Inc.). All experiments have been done with the artificial
time varying communication delays and the sampling time
is 1[ms]:

T, (t) = 0.1sint + 0.15 [s] 65
T,(t) = 0.1sint + 0.15 [s] (65)

From above equation, maximum round-trip delay is
0.39[s]. The controller gains are chosen as: K" =
diag(120,120), K7' = diag(24, 24); KpL = diag(450, 450),
KLY = diag(90,90); Ko = diag(0.15,0.15), Kk =
diag(0.55,0.55), k,, = 1, kp = 375 K; =
diag(300,300), K5 = diag(50,50); power scale 3 = 1/4;
position scale o = 1.5625.

Two kind of experimental conditions are given as follows:

Case 1: Control the grasping object without any contact with
remote environment

Case 2: Control the grasping object in contact with remote
environment

The experimental results are shown in Figs. 4-6. The Fig. 4
shows the position of the master mini-robot and the Locked-
System with cooperative robots in case two slaves robot
move in the free space. We can see the positions of both
side are achieved. The Fig. 5 shows the time responses of
the end-effector position of slave of the Shape-System, In this
figure, we can conclude that the relative position between two
slaves following the target trajectory with grasping object is
achieved. In the Fig. 6, the grasping object at the center
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position between two end-effectors of the slaves is able to
transported following the end-effector of the master robot.
The object is presumed to mix with closed links of the slaves.
When grasping, the distance between the slaves is narrowed.

The experimental results in case of contact with the
environment is shown in Figs. 7, 8. The objected is grasped
and come to contact with the environment following vertical
Y axis. Fig. 7 shows the time responses of the end-effector
position of the Locked-System with the master. The Fig. 8
shows the reflection forces when the object contacts with the
environment. We can see that the reflecting force from the
environment and the scaling force of the human are same

values.
VI. CONCLUSIONS

In this paper, we proposed a new control law with four-
channel force-flection (FR) algorithm for a SMMS teleoper-
ation system based on ISS small gain theorem. This proposal
resolves the dynamics of multiple slaves system such as the
Shape-System dynamic and the Locked-System dynamic of
the control law. Moreover, the proposed control law can be
used to achieve an autonomous grasping object by multiple
slave and the transportation of the object by the control
experiment. In this work, the slaves are possible to hold even
if unknown objects or the width extendable of object if it can
be held by the force control. The force information on the
grasping object is necessary for the position control law to
keep the object to be held. To analyze stability, ISS small
gain approach was used to show the overall FR teleoperation
system to be input-to-state stable.
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