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Abstract—This paper focuses on a new force-reflection (FR)
algorithm based on input-to-state stability (ISS) small gain
theorem in cooperative work of Single Master-Multiple Slave
(SMMS) teleoperation system with time varying communication
delay. In this work, we propose a new position tracking control
for object grasping and a new FR algorithm based on a PD
control to transfer the positions, velocities and force information
between both sides of teleoperation. The goal of these methods
are to achieve the secure grasping by multiple slave robots and
improve the tracking performance of the cooperation SMMS
teleoperation system. To analyze stability of the system, the ISS
small gain approach is used to show the overall force-reflecting
teleoperation to be input-to-state stable. Several experimental
results show the effectiveness of our proposed method.

I. INTRODUCTION

Teleoperation systems allow person to extend their sense
and manipulation capabilities to remote place. In general, slave
robot can perform some real tasks at the remote place by
controller signals that send from the master side. In bilateral
control, contact information will feedback to the master side,
this information is necessary to improve the manipulation
capability [1]. One absolutely unsolved problem of the control
of teleoperation system is time delay in communication line.
The delay may destabilize and deteriorate the transparency of
the teleoperation system. Therefore, it is necessary to design
a control law to guarantee the stability of the system under
communication delays.

Up to now, many successful control schemes have been
proposed for the teleoperation system with single master
single slave (SMSS). However, the teleoperation systems with
multirobot are relative rare. In [2], [3], [4], [5] some control
methods were proposed for the system with multiple master
multiple slave (MMMS). In this system, one human can
control one slave robot to perform separate operation in a
cooperative task, thus the system may demand a large of
number of human operators if the task requires many slave
robots. In [6], [7], [8] the single master multiple slave (SMMS)
systems were considered, but these control methods were only
proposed for the motion coordination.

Many surveys concern the motion and force control prob-
lems of SMSS system, however it is relative rare with SMMS
system, especially in case of contact between the grasping
object and the environment. When contact occurs, the arising
forces will be dictated by the dynamic balancing of two
coupled systems, the cooperative slave robots and the envi-
ronment. In addition, to improve the transparency of SMSS
bilateral teleoperation with communication delays, a force-
reflection (FR) scheme was addressed by Polushin et al. [11],
a stabilization scheme for force reflecting teleoperation was
introduced.

In this paper, we propose a novel cooperative control
method of the SMMS system with four-channel force re-
flection based on ISS small gain theorem. This method is
developed from one of our previous results [12], [13]. In
this work, the position tracking control in a cooperative task
between a master and multiple slave robots was proposed,
however the real force-reflection has not been treat. In this
paper, we propose using two forward and backward forces to
transfer the force information from both sides of teleoperation,
it makes a four-channel FR algorithm under time varying delay
in the communication lines. The goal of our control method is
to guarantee the overall stability, the master and slave spacing
zero errors achievement and the stability of reflecting force
when the interaction occurs. In addition, we also assume using
an individual gain for a different structure of the master and
the slave robots. In the independent design, a scaling power
can be set to both sides of teleoperation. To improve the
stability analysis of our previous work [13], the ISS small
gain approach is used to show the overall FR teleoperation
system to be input-to-state stable, we also can see in [14]. In
the experiment, two slave robots hold and carry one object to
one desired position following the control signals that send
from the master side. The results of experiment show the
effectiveness of our proposed control technique.

II. PROBLEM FORMULATION

A. Dynamics of Teleoperation System

In this section, the dynamics of the SMMS system that
composed one master and N slave robots can be shown by
a motion equation of a general robot arm. The dynamic of
the master with m-DOF and the dynamics of the i slave with
ni-DOF are shown as follows:{

Mm(qm)q̈m +Cm(qm, q̇m)q̇m = τm + JT
m(qm)Fop

Mi(qi)q̈i +Ci(qi, q̇i)q̇i = τi + JT
i (qi)Fi

(1)

where the subscript “m” denotes the master and the subscript
“i” denotes the order indexes of the slave; qm ∈ Rm×1, qi ∈
Rni×1 are the joint angle vectors; τm ∈ Rm×1, τi ∈ Rni×1

are the input torque vectors; Fop ∈ Rm×1 is the operational

force vector; Fi ∈ Rni×1 are the grasping force vectors; Mm ∈
Rm×m, Mi ∈Rni×ni are the symmetric and positive definite iner-
tia matrices; Cm(qm, q̇m)q̇m ∈ Rm, Ci(qi, q̇i)q̇i ∈Rni are the cen-
tripetal and Coriolis torque vectors; Jm(qm) ∈ Rm×m, Ji(qi) ∈
Rni×ni are Jacobian matrices.

In this paper, we propose a control law for different struc-
tural teleoperation. This control law of the system maybe not
possible with some parameters in the joint space, therefore it is
useful to rewrite the master and slave robot dynamics directly
in the task space, we have:
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ẋk(t) = Jk(qk)q̇k(t), k = m, i. (2)

by further differentiation of (2) as:

ẍk(t) = Jk(qk)q̈k(t)+ J̇k(qk)q̇
2
k(t), k = m, i. (3)

where ẋm, ẍm ∈ Rm×1 and ẋi, ẍi ∈ Rni×1 are the end-effector
velocities and acceleration vectors, respectively. Substituting
(2) and (3) into (1), we can get the master and multiple slave
robots dynamics in the task space as follows:

M̃m(qm)ẍm + C̃m(qm, q̇m)ẋm = J−T
m τm +Fop (4)

M̃i(qi)ẍi + C̃i(qi, q̇i)ẋi = J−T
i τi +Fi (5)

where: M̃k = J−T
k MkJ−1

k ; C̃k = J−T
k {Ck −MkJ−1

k J̇k}J−1
k , (k =

m, i), xi is end-effector of each slave robot in Cartesian
coordinate system of multiple slaves. Let us denote the total
degree of freedom of the N slave robots by: n = ∑N

i ni, hence
the group dynamics of the N slave robots can be rewritten as:

M̃(q)ẍ+ C̃(q, q̇)ẋ = τ +F (6)

where x = [xT
1 , . . . ,x

T
N ]

T ∈ Rn, τ = [τT
1 J−T

1 , . . . ,τT
N J−T

N ]T ∈

Rn, F = [FT
1 , . . . ,FT

N ]T ∈ Rn, and M̃(q) = diag[M̃1(q1), . . .,

M̃N(qN)] ∈ Rn×n, C̃(q, q̇) = diag[C̃1(q1, q̇1), . . . ,C̃N(qN , q̇N)]
∈ Rn×n are the inertia matrices and Coriolis matrices, respec-
tively.

In teleoperation, the signals are transferred between both
sides of master and slave. Communication delay is assumed
as follows:

Assumption 1: Both time varying delay Tm(t) and Ts(t) are
continuously differentiable functions and possibly bounded as:

0 ≤ Th(t)≤ T+
h < ∞, |Ṫh(t)|< 1, h = m,s (7)

where T+
h ∈ R is upper bounds of the communication delays.

In this paper, the remote environment is assumed to be a simple
spring-damper system with constant parameter. This system is
as a perturbed system described by the equations below in the
form of input-to-state stability properties:{

ẋe = Fenv(t,xe,xL, ẋL)+ ge(t,xe,xL, ẋL)
FL = Γenv(t,xe,xL, ẋL)

(8)

where xe ∈ Rn is a position of the environment, xL and ẋL ∈
Rn×1 are the position and velocity vectors of the cooperative-
slave robots in Locked-System (this system will be presented
in Section III); FL is the environment force. We assume that
Fenv(t,xe,xL, ẋL), Γenv(t,xe,xL, ẋL) are piecewise continuous in
t and locally Lipschitz in xe, xL, ẋL. The input (xL(t), ẋL(t))
is a piecewise continuous and essentially bounded function of
t for all t ≥ 0; ge(t,xe,xL, ẋL) is the perturbation term. The
environment satisfies following assumptions:

Assumption 2: The cooperative-slave contacts with follow-
ing spring-damper environment with constant parameter

Γenv(t,xe,xL, ẋL)≤ |xe|+ a|ẋL|+ b|xL| (9)

holds for all t ≥ 0; a, b are constant parameters (a, b > 0).
Assumption 3: Let xe = 0 be a uniformly asymptotically

stable equilibrium point of the nominal system (8). There
exists a Lyapunov function of the nominal system such that
α1e(|xe|)≤Ve(xe)≤ α2e(|xe|) holds for all xe ∈ Rn, and Ve = 0
while xe = 0. The time derivative of Ve along trajectories of
(8) satisfies:

V̇e(t)≤−α3e|xe|
2 +

∣∣∣∣
∂Ve

∂x

∣∣∣∣g(t,xe,xL, ẋL) (10)

where α1e(|xe|), α2e(|xe|) are class K functions and α3e > 0.
The perturbation ge(t,xe,xL, ẋL) in (10) satisfies the uniform
bound: ∣∣∣∣

∂Ve

∂x

∣∣∣∣|ge(t,xe,xL, ẋL)| ≤ δα4e|xe| ≤ FT
L se(t) (11)

for almost all t ≥ 0 and ∈ Rn, α4e > 0, and δ is a perturbation
gain.
Let us define: se(t) = ẋL(t)+ΛenvxL(t) (12)

where Λenv ∈ Rn×n is a positive diagonal gain matrix.
Note the first bound of the perturbation in (11), we have:

V̇e ≤−α3e|xe|
2 +θeα3e|xe|

2 −θeα3e|xe|
2 +δα4e|xe|

=−(1−θe)α3e|xe|
2 −|xe|(θeα3e|xe|−δα4e)

≤−(1−θe)α3e|xe|
2; ∀|xe| ≥

δα4e

θeα3e

(13)

where θe is some positive constant, θe < 1.
Therefore, the upper bound of perturbation in (11) satisfies

the time derivative of Ve as follows:

V̇e(t)≤−α3e|xe|
2 +FT

L se(t) (14)

B. Control Objectives

In this paper, the SMMS system is constructed with one
master and two slave robots. We would like to design a control
law for SMMS system to satisfy following Control Objectives.

Control Objective 1: (Autonomously grasping by multiple
slave robots) In this work, the grasping achievement following
condition:

xS = xd
S (15)

where xS ∈ Rn−m is the relative position of the end-effectors
of the slaves, xd

S ∈ Rn−m is a desired position of xS.
Control Objective 2: (Movement of grasped object) When

the grasping is achieved, the movement of the grasped object
is achieved as:

xL = xm (16)

where xL = αxL0 −C, xL0 ∈ Rm and xm are the center position
of the slave end-effectors and the position of the master,
respectively; α ∈ R is the position scale, C ∈ Rm is shown
as a translation value.

Control Objective 3: (Static force reflection) The teleoper-
ation with static force reflection is achieved as ẋ j = ẍ j = 0( j =
m,L) such that:

Fop =−β FL (17)

where FL is the contact force of cooperative-slave, β > 0 ∈ R
is a positive scalar and it expresses a force scaling factor.

III. CONTROL DESIGN

In this section, we propose a novel control law for the
SMMS system to achieve above Control Objectives.

A. Passive-Decomposition

First, base on Passive-Decomposition [9] that was intro-
duced by D. Lee, the dynamic of multiple slave robots is
decomposed into two decoupled systems: the Shape-System
describing “movement of the multiple slaves with grasping
object” and the Locked-System describing “movement of the
multiple slaves according to the instruction from the master”.

Utilizing the Passive-Decomposition, the velocity of mul-
tiple slave robots is rewritten with each system as follows:

ẋ = S−1

[
ẋS

ẋL

]
(18)
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Fig. 1. Four-channel FR Teleoperation of SMMS system

where ẋS ∈ Rn−m is relative velocity of the end-effectors of
the slaves in the Shape-System and ẋL ∈ Rm is the velocity the
Locked-System. S is the non-singular decomposition matrix.

In the following formula of S−T M̃S−1, the non-diagonal terms
become zeros as:

S−T M̃S−1 =

[
MS 0
0 ML

]
(19)

where MS ∈ R(n−m)×(n−m), ML ∈ Rm×m are inertia matrices
of the Shape-System and the Locked-System, respectively.
In addition, a local compensation of impedance shaping is
necessary. We have relationships of the forces as follows:

[
FS

FL

]
= S−T

[
F1

F2

]
,

[
τS

τL

]
= S−T

[
τ1

τ2

]
(20)

where F1 and F2 are forces in each end-effector of slave
robot that exert on grasping object. We define:[

CS CSL

CLS CL

]
= S−T M̃

d

dt
(S−1)+ S−TC̃S−1 (21)

note (6), the Passive-Decomposition form is written as:

MS(q)ẍS +CS(q, q̇)ẋS +CSL(q, q̇)ẋL = τS +FS (22)

ML(q)ẍL +CL(q, q̇)ẋL +CLS(q, q̇)ẋS = τL +FL (23)

Above dynamic equations include friction terms CSL(q, q̇)ẋL

and CLS(q, q̇)ẋS. However, ignore the remote control by the hu-
man, decoupling of the Shape-System and the Locked-System
is desired for the slave that maybe autonomous grasping.
Therefore, the decoupling control inputs are given as follows:

τS =CSL(q, q̇)ẋL + τ
′

S (24)

τL =CLS(q, q̇)ẋS + τ
′

L (25)

where τ
′

S, τ
′

L are new control inputs. Substituting (24), (25)
into (22), (23), we get:

MS(q)ẍS +CS(q, q̇)ẋS = τ
′

S +FS (26)

ML(q)ẍL +CL(q, q̇)ẋL = τ
′

L +FL (27)
hence, two above dynamics become a decoupling.

Some properties of this SMMS system are given as follows:
Property 1: Mi(q)(i = S,L) is a positive symmetric matrix,

and there exist some constant parameters with below relation-
ship as :

0 < mi1 ≤‖ Mi ‖≤ mi2

‖Ci ‖≤ ci ‖ ẋi ‖ (28)

Property 2: Ṁi(q)−2Ci(q, q̇) (i= S,L) are skew-symmetric
matrices.

Property 3: ẋi, ẍi (i = S,L) are bounded and Ṁi,Ċi are also
bounded.
Properties 1∼3 denote the feature of motion equation of
normal robots. The following assumption is from (1), (26),
(27) as follows:

Assumption 4: The operator and the environment can be
modeled as passive systems, where the velocities ẋm, ẋL are
system inputs and bounded, the force Fop, FL are system

outputs, respectively. Moreover, these forces are bounded by
the functions of the velocities of the master and the Locked-
System. The velocities ẋm, ẋL also equal zero for t < 0.

B. Proposal Control Law

Concerning the control law of the Shape-System (26), the
Control Objective of this system is: xS = xd

S , then the position
tracking with this control law is proposed as follows:

τ
′

S =MS{ẍd
S(t)−KS

d (ẋS − ẋd
S(t))−KS

p(xS −xd
S(t))}+CS ẋS −FS (29)

Substituting (29) into (26) we obtain the following closed-
loop systems:

ë+KS
d ė+KS

pe = 0, e = xS − xd
S (30)

where KS
d , KS

p are positive definite diagonal gain matrices.
Considering the coupling control of the master and the

Locked-System. Note the Control Objectives 2 and 3, the
SMMS teleoperation system with four-channel FR architecture
of the communication lines is concerned. The cooperative
control law is defined as follows:

τm = JT
m{−Km

d ẋm
e −Km

p xm
e − (1−Km

F )Fop −Km
F βFL(t −Ts(t))} (31)

τ
′

L =−KL
d ẋL

e −KL
p xL

e +KL
F β−1Fop(t −Tm(t))− (1+KL

F )FL (32)

where ẋ
m/L
e , x

m/L
e are the position and velocity errors of

master and cooperative slave robots; β is force scaling factor;
Tm(t) and Ts(t) are assumed to be time varying delays. If
the positions and velocities of the master and cooperative
slaves are transmitted to each side with communication delays
Tm/s(·), and similar to the exerted and contact forces, the
following signals

x̂m/L(t) = xm/L(t −Tm/s(t)), ˙̂xm/L(t) = ẋm/L(t −Tm/s(t))Ṫm/s(t);

F̂op = Fop(t −Tm(t)), F̂L = FL(t −Ts(t)) (33)

are available for the controller on both sides of teleoperation.
We define:

xm
e = xm − x̂L, ẋm

e = ẋm − ˙̂xL;

xL
e = xL − x̂m, ẋL

e = ẋL − ˙̂xm (34)

Substituting above control law (31), (32) into the Locked-
System (27) and dynamic equation of the master (4), we obtain
a closed-loop system as follows:

M̃m(qm)ẍm +C̃m(qm, q̇m)ẋm =−Km
d ẋm

e −Km
p xm

e +Km
F

(
Fop −β F̂L

)

(35)

ML(q)ẍL +CL(q, q̇)ẋL =−KL
d ẋL

e −KL
p xL

e +KL
F

(
β−1F̂op −FL

)
(36)

where K
j
p, K

j

d and K
j

F ( j = m,L) are gains and defined

as follows: Km
(p,d,F) = kmK(p,d,F); KL

(p,d,F) = kLK(p,d,F); where

K(p,d,F) ∈ Rn×n are positive definite diagonal control gain
matrices; km > 0,kL > 0 are constant gains of scalar that
designed separately on the master and the slave side. We can
see in the Fig. 1, it shows a block diagram of the cooperative
control system with four-channel force reflecting teleoperation.

IV. STABILITY ANALYSIS

A. Stability of Shape-System

The below theorem concerns the Shape-System.
Theorem 1: Consider the closed-loop Shape-System (30),

desired value of relative position of spaces between the slave
robots is conversed as follows:

e = xS − xd
S → 0 as t → ∞ (37)
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Proof: The equation (30) can be rewritten as follows:
[

ė
ë

]
= φ

[
e
ė

]
, φ =

[
0 I

−KS
P −KS

d

]
(38)

where KS
P,K

S
d are positive diagonal matrices, eigenvalues of

φ become negative, therefore following errors of position and
velocity are achieved:

e = xS − xd
S → 0 as t → ∞ (39)

ė = ẋS − ẋd
S → 0 as t → ∞ (40)

it means the Control Objective 1 is achieved and the au-
tonomous grasping of multiple slaves is also achieved.

B. Stability of Locked-System

This section deals with the stability of the overall teleopera-
tion system that includes the master and the cooperative slave
subsystems of Locked-System.

Lemma 1: Consider the closed-loop master subsystem to be
a piecewise continuous in t and locally Lipschitz in the state
xM = (xT

m, ẋ
T
m)

T ; the input uM = (x̂T
L ,

˙̂xT
L , F̂

T
L )T . There exists a

continuous differentiable, positive definite, radially unbounded
Lyapunov function Vm:Rr → R of the subsystem that satisfies
the inequalities:

α1m(|xM|)≤Vm ≤ α2m(|xM|) (41)

∂Vm

∂ t
+

∂Vm

∂x
f (t,xM,uM)≤−α3m(|xM|), (42)

∀|xM| ≥ ρm(|uM|)> 0

∀t ≥ 0, D = {xM ∈ Rn; |xM| < rm}, Du = {uM ∈ Rm; |uM| <
rmu}, where α1m(|xM|), α2m(|xM|), α3m(|xM|) and ρm are
class K functions, then the subsystem is locally input-to-state
stable.

Proof: First, consider an ISS-Lyapunov function candi-
date as follows:

Vm = k−1
m ẋT

mM̃mẋm + 2xT
mKpxm − 2KF

∫ t

0
FT

op(ξ )ẋm(ξ )dξ (43)

where M̃m,Kp,KF are positive definite matrices; km,β > 0.
Following the Assumption 4, the environment and the ma-
nipulator are passive, then Vm is the positive function. We
also easily check that this function satisfies (41), and Vm = 0
while ẋm = 0, xm = 0. Since α1m(xM) and α2m(xM) are radially
unbounded, hence Vm is said to be radially unbounded.

The derivative of above function along trajectories of the
system (35) with concerning Property 2 as:

V̇m =−2ẋT
mKd ẋm +2ẋT

mKd
˙̂xL +2ẋT

mKpx̂L −2KF β ẋT
mF̂L

+2ẋT
mθmẋm −2ẋT

mθmẋm

=−2ẋT
m(Kd −θm)ẋm −2ẋT

m(θmẋm −Kd
˙̂xL −Kpx̂L +KF β F̂L)

≤−2ẋT
m(Kd −θm)ẋm (44)

∀|ẋm| ≥
Kd | ˙̂xL|+Kp|x̂L|+KF β |F̂L|

θm

(
= ρm(|uM |)

)

where θm is some positive constant. We can choose θm to
satisfy the derivative of Vm to be negative as follows:

θm < Kd (45)
Remark 1: Note the Assumptions 1, 4 and the expression

(33), there exists at least one value of |ẋm| to guarantee above
condition of (44), since Ṫs(t) is bounded, the delay parameters
x̂L and ˙̂xL are also bounded.

Using the fact that, the signal ẋm is bounded, the feedback
force from slave side is also bounded or the input uM is
bounded. Following the Theorem 5.2 in [15], we can choose
a class K function γm = α−1

1m ◦ α2m ◦ ρm, positive constant

k1m = α−1
2m (α1m(rm)) and k2m = ρ−1

m (min{k1m,ρm(rmu)}) for
any initial state xM(t0) and any bounded input uM(t), and
we can choose rm and rmu large enough that satisfies the
inequalities given below:

|xM(t0)|< α−1
2m (α1m(rm));

ρm

(
sup
t≥t0

|uM|
)
< min{α−1

2m (α1m(rm)),ρm(rmu)} (46)

Using the Definition 5.2 in [15] we have the solution xM(t)
exists and satisfies:

|xM(t)| ≤ µ(|xM(t0)|,t − t0)+ρm

(
sup

t0≤τ≤t

|uM(τ)|
)
,

∀0 ≤ t0 ≤ t (47)

where µ is a class K L function. Then the solution xM(t) only
depends on uM(τ) for t0 ≤ τ ≤ t, and the master subsystem is
locally input-to-state stable.

Now, we consider the slave-environment interconnection
with the cooperative-slave subsystem.

Lemma 2: State of the closed-loop cooperative-slave sub-
system is assumed as: xS = (xT

L , ẋ
T
L ,x

T
e )

T , and input: uS =
(x̂T

m, ˙̂xT
m, F̂

T
op)

T . We suppose the environment dynamics (8)
satisfy Assumptions 2 and 3. There exits a continuous differen-
tiable, positive definite, radially unbounded Lyapunov function
Vs of the subsystem that satisfies the below inequalities:

α1s(|xS|)≤Vs ≤ α2s(|xS|) (48)

∂Vs

∂ t
+

∂Vs

∂x
f (t,xS,uS)≤−α3s(|xS|) (49)

∀|xS| ≥ ρs(|uS|)> 0
∀t ≥ 0, D = {xS ∈ Rn; |xS|< rs}, Du = {uS ∈ Rs; |uS|< rsu}

where α1s(|xS|), α2s(|xS|), α3s(|xS|) and ρs are class K

functions, then the subsystem is locally input-to-state stable.
Proof: We consider the ISS-Lyapunov function candidate

as follows:

Vs =k−1
L ẋLMLẋL + xLKpxL + 2KF

∫ t

0
FL(ξ )ẋL(ξ )dξ +Ve (50)

where Ve was introduced in the Assumption 3, ML,Kp,KF are
the positive definite matrices. Similar to the master subsystem,
the first and the second term of the right-side in (50) are
radially unbounded; note that in the Assumption 3, Ve satisfies
the inequality (9) with any radially unbounded α1e and α2e,
then Vs is also said to be radially unbounded and satisfies the
inequality (48). We also can easily check that Vs(0) = 0 while
xS = 0 (ẋL = 0, xL = 0, xe = 0).

The derivative of Vs along the trajectories of the system (36)
with concerning Property 2 as follows:

V̇s =−2ẋT
L Kd ẋL +2ẋT

L Kd
˙̂xm +2ẋT

L Kpx̂m +2KF β−1F̂T
opẋL +V̇e (51)

Note the derivative of Ve in (14) and the expressions of FL

and se in Assumption 3, we have:

V̇e ≤−α3ex2
e + |xT

e |ẋL −|xT
e |ΛenvxL + aẋ2

L

− b|xT
L |ΛenvxL + |xT

L |(b− aΛenv)ẋL (52)

Applying Young’s quadratic inequality with |AT B| ≤
(ε/2)|A|2 +(1/2ε)|B|2 that holds for all ε > 0, therefore we
can obtain the following bound of the second and third terms
in (52) as:

|xe|
T ẋL ≤

λ

4
|xe|

2 +
1

λ
ẋ2

L (53)

|xe|
T ΛenvxL ≤

λ

4
|xe|

2 +
Λenv

λ
x2

L (54)
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where λ is a small positive constant. If we choose a= b= 1/λ
and Λenv = I, we can rewrite the derivative of the Lyapunov
function as follows:

V̇s ≤− ẋT
L 2Kd ẋL −

(
α3e −

λ

2

)
|xe|

2 +2KF β−1ẋT
L F̂op

+2ẋT
L Kd

˙̂xm + ẋT
L Kd x̂m +2ẋT

L θLẋL −2ẋT
L θLẋL

≤−2ẋT
L

(
Kd −θL

)
ẋL −

(
α3e −

λ

2

)
|xe|

2

−2ẋT
L

(
θLẋL −Kd

˙̂xm −Kd x̂m −KF β−1F̂op

)
(55)

where θL is some positive constant. We can choose the values
of λ and θL to satisfy first two terms of (55) to be negative.
We have: {

θL < Kd

λ < 2α3e
(56)

from (55), we receive:

V̇s ≤−2ẋT
L

(
Kd −θL

)
ẋL −

(
α3e −

λ

2

)
|xe|

2 (57)

∀|ẋL| ≥
Kd | ˙̂xm|+Kd |x̂m|+KF β−1|F̂op|

θL

(
= ρ(|uS|)

)

Similar to the master subsystem case, note the Assump-
tions 1, 4 and the expression (33), we can conclude that
the slave+environment subsystem is also locally input-to-state
stable.
Based on the Lemma 1 and Lemma 2, the following theorem
concerning stability properties of the closed-loop system is
obtained.

Theorem 2: Consider the cooperative teleoperation system
(1), the FR algorithm in (31) and (32). Suppose the environ-
ment dynamic satisfies Assumption 3, there exists γΛ(·) ∈ K

such that γΛ = γm ◦ γs implies that: for the four-channel FR
teleoperation, the overall system is input-to-state stable.

Proof: We choose the state of the overall FR tele-
operation as: xT = (xT

m, ẋ
T
m,x

T
L , ẋ

T
L ,x

T
e )

T and the output as:

uT =
(
x̂T

m, ˙̂xT
m, x̂

T
L , ˙̂xT

L , F̂
T
op, F̂

T
L

)T
. Now we can combine above

presented results and the consecutive application of the ISS
theorem. Indeed, denote by the ISS gain γm[uM→xM ](·) ∈ K of
the closed-loop master subsystem, whole existence is guaran-
teed by Lemma 1. And also, we let γs[uS→xS](·) ∈ K be the
ISS gain of the closed-loop slave+environment subsystem (8).
Choose γΛ such that the satisfying:

γΛ = γ[uM→xM ](·)◦ γ[uS→xS](·) (58)

Applying the Definition 5.2 [15], we can conclude the
overall FR teleoperation system is input-to-state stable. The
proof is completed.

V. EVALUATION BY CONTROL EXPERIMENTS

A. Impedance Shaping

In this paper, the SMMS system was constructed with two
of 2-DOF serial-link arm of slave robots. Some parameters
xS,x

d
S ,xL are defined as follows:

xS = x̄1 − x̄2 =
[
x1 −x2
y1 −y2

]
; xd

S =
[
d
0

]
(59)

xL = α
x̄1 + x̄2 −C

2
=

α

2

[
x1 +x2 −c

y1 +y2

]
(60)

where C = [c 0]T is the transport value of the coordinates at
master and slave robot, α is the position scale; x̄1 = [x1 y1]

T ,
x̄2 = [x2 y2]

T are position of the end-effector of slave robots,
respectively. From (59) and (60) we get:

[
ẋS

ẋL

]
=

[
˙̄x1 − ˙̄x2

α
2
( ˙̄x1 + ˙̄x2)

]
=

[
I −I

α
2

I α
2

I

][
˙̄x1
˙̄x2

]
(61)

 X1
 X2

 X

 X

Object

Fig. 2. Experimental setup.

Length

Diameter

Weight

47 [cm]

5.7 [cm]

195 [g]

Fig. 3. Grasping object.

We define the decomposition matrix S as follows:

S =

[
I −I

α
2

I α
2

I

]
(62)

However, the non-diagonal and coupling terms between the
Shape-System and the Locked System still exist even by using
this decomposition matrix S. Thus, a linearization technique
with the impedance shaping is then introduced as:

τi = JT
i {MiH

−1(τ
′

i +Fi)−Fi+Ci ˙̄xi} (i = 1,2) (63)

where τ
′

i is a new control input, H is inertia matrix of device.
Therefore, the Shape-System and the Locked-System to be
decoupling, we get:[

MS 0
0 ML

][
ẍS
ẍL

]
=

[
τ
′

S

τ
′

L

]
+
[
FS
FL

]
(64)

Therefore, by the definition of xS,xL mentioned above, the
Shape- System and the Locked-System are decoupling by the
impedance shaping only.

B. Experimental Setup and Results

In the experiment, the SMMS system is constructed by one
master with two DOFs parallel link type arm and two slaves
with two-two DOFs series link type arms. The experimental
setup is shown in Fig. 2. The remote environment on the slave
side is a hard iron global as also shown in the Fig. 2. The
cylindrical grasping object is used and shown in Fig. 3. For
implementation of the controllers and communication lines,
we utilise a dSPACE digital control system (dSPACE Inc.).
All experiments have been done with the artificial time varying
communication delays and the sampling time is 1[ms]:{

Tm(t) = 0.1sin t + 0.15 [s]
Ts(t) = 0.1sint + 0.15 [s] (65)

From above equation, maximum round-trip delay is 0.39[s].
The controller gains are chosen as: Km

p = diag(120,120),

Km
d = diag(24,24); KL

p = diag(450,450), KL
d = diag(90,90);

Km
F = diag(0.15,0.15), KL

F = diag(0.55,0.55), km = 1, kL =
3.75, KS

p = diag(300,300), KS
d = diag(50,50); power scale

β = 1/4; position scale α = 1.5625.
Two kind of experimental conditions are given as follows:

Case 1: Control the grasping object without any contact with
remote environment

Case 2: Control the grasping object in contact with remote
environment
However, in actual experiments, it is difficult for entirety

time synchronization on master and slave side in the system
configuration. The data that received from master and the data
of slave that measured from slave side need be compared,
especially the position data on the slave side.

The experimental results are shown in Figs. 4-6. The Fig. 4
shows the position of the master mini-robot and the Locked-
System with cooperative robots in case two slaves robot move
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Fig. 4. Position of non-grasping in free space.
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Fig. 5. Position of Shape-System and xd
S .
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Fig. 6. Position of Master and Locked-System in free space.

0 10 20 30 40 50 60 70
0.05

0.1

0.15

0.2

0.25

0.3

Time [s]

X
-p

o
si

ti
o
n

[m
]

x
m

x
L

In contact

0 10 20 30 40 50 60 70
0.1

0.12

0.14

0.16

0.18

0.2

Time [s]

Y
-p

o
si

ti
o
n

[m
]

y
m

y
L

In contact

Fig. 7. Position of Master and Locked-System in contact task.
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Fig. 8. Force data in contact task.

in the free space. We can see the positions of both side are
achieved. The Fig. 5 shows the time responses of the end-
effector position of slave of the Shape-System, In this figure,
we can conclude that the relative position between two slaves
following the target trajectory with grasping object is achieved.
In the Fig. 6, the grasping object at the center position between
two end-effectors of the slaves is able to transported following
the end-effector of the master robot. The object is presumed
to mix with closed links of the slaves. When grasping, the
distance between the slaves is narrowed.

The experimental results in case of contact with the en-
vironment is shown in Figs. 7, 8. The objected is grasped

and come to contact with the environment following vertical
Y axis. Fig. 7 shows the time responses of the end-effector
position of the Locked-System with the master. The Fig. 8
shows the reflection forces when the object contacts with the
environment. We can see that the reflecting force from the
environment and the scaling force of the human are same
values.

VI. CONCLUSIONS

In this paper, we proposed a new control law with four-
channel force-flection (FR) algorithm for a Single Master-
Multiple Slave (SMMS) teleoperation system based on ISS
small gain theorem. This proposal resolves the dynamics of
multiple slaves system such as the Shape-System dynamic and
the Locked-System dynamic of the control law. Moreover, the
proposal control law can be used to achieve an autonomous
grasping object by multiple slave and the transportation of
the object by the control experiment. In this work, the slaves
are possible to hold even if unknown objects or the width
extendable of object if it can be held by the force control. The
force information on the grasping object is necessary for the
position control law to keep the object to be held. To analyze
stability, the input-to-state stability (ISS) small gain approach
was used to show the overall FR teleoperation system to be
input-to-state stable. Finally, several experimental results show
the effectiveness of our proposal control method.
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