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Abstract—In this paper, a mobile robot localization and map-
ping with intermittent measurements is considered. A mobile
robot is arbitrarily placed in an unknown environment and then
must constructs a map and localize itself in the builded map
whenever observations are missing by using H∞ Filter(HF). We
show that, even if a measurement data is missing or there are
some uncertainties exist during observations, part of informa-
tion still available for the robot to estimate its location and
landmarks effectively. One solution for the problem is by using
measurement innovation to sufficiently provides information. We
guarantee that, even if measurements are sometimes missing, the
measurement innovations contributes information for estimation
purposes.

I. INTRODUCTION

Mobile robot localization and mapping plays an important

role in realizing autonomous robot behavior. It states a problem

that a mobile robot is placed in an unknown environment and

makes observations about its surroundings. Information are

then used to build a map while at the same time, robot attempts

to localize itself in the constructed map(See Fig.1). The prob-

lem which is also known as SLAM(Simultaneous Localization

and Mapping) problem dominate most of the robot problem

based on the fact that the robot must continuously confirmed

its location to accomplish their given task. The research of

SLAM has been proceeded to either theoretical and practical

approach in various kinds of ways e.g[1], [2], [3]. Up to date,

E.Asadi et al.[1] proposed a method that considered informa-

tion fusion by two different channel of sensory data to enhance

the estimation in SLAM problem. They claimed that this is a

way to improve estimation and lead to better results. SLAM

Fig. 1. Mobile robot localization

depends on the efficiency of robot localization and sensory

data to fulfill it given task. There are also different types of

SLAM approaches available such as EKF(Extended Kalman

Filter), HF, Particle Filtering(PF)[4], [5], etc., which already

been proposed and analyzed in some desirable conditions to

achieve various kind of tasks. However EKF suffer in non-

gaussian noise while PF has high computational cost and is

complex. We seek for a robust filter that can overcome such

problems for SLAM and therefore propose the study of HF-

based SLAM.

In this paper, we investigate the HF-based SLAM con-

vergence and its behavior under intermittent measurements.

Hamzah et.al[6] investigated the convergence properties of to-

wards HF SLAM and they inspires us to determine its potential

in intermittent measurement. Intermittent measurements states

a situation where measurement data is not arrived at a specific

time due to system failure or sensor defects. Mobile robot

equipped with various kinds of sensors fall as one of the

possible candidates in this condition. This is due to some data

may partially lost during its observations.

The research of intermittent measurement have been focused

mainly on Kalman Filter[7][8][9] for network system and

surprisingly very limited studies on mobile robot are found.

Intermittent measurement studies originated in 1969 when

Nahi[9] examined two different cases of data loss and then

derived an optimal estimator as a solution to the problem. His

results are then being analyzed further by some researchers

constitutes more on network packet drops. Sinopoli[7] stated

that a critical value is existed for missing measurement data in

the sensor network and proposed some bounded value to the

expected error. However, their results does not show explicitly

the error bound of the system. Plare and Bullo[8] demonstrated

that there is an exact critical value whenever observations

are missing for a detectable system by analyzing cones of

the positive semidefinite matrix to the system. They claimed

that the critical value is bounded to some exact value which

supports Sinopoli results.

On behalf of robotics research, Payeur[10] studied on the

propagation of uncertainties by using Jacobian to build a scene

of environment in the sense of intermittent measurements. The

information is then being combined into the occupancy grid to
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visualize the system characteristics. Other than this approach,

we did not find any analysis of intermittent measurement in

robotics application.

Instead of formulating the problem under the covariance

characteristics which is mostly focussed in this research, the

measurement innovation is applied to contribute information

about the system. We prove that the measurement innovation

defines the system uncertainties whenever measurement data

are missing. To investigate the problem, we present HF-SLAM

as a method to explain the measurement innovation behavior

during intermittent measurement.

This paper is organized as follows. Section II introduces

the problem statement and describes the whole dynamical

system of the robot under HF with an underlying theory on

intermittent measurements. Section III discuss and analyzes

the convergence analysis for intermittent measurements and

propose our main results. Section IV determine the experi-

mental results and discussion. Finally, Section V concludes our

paper.

II. PROBLEM STATEMENTS

The HF-SLAM is discussed to understand its estimation

whenever measurements are missing during mobile robot

observations. The mobile robot that does not know its initial

conditions, has to estimate its location and landmarks in a an

unknown environment. The problem describes that, for a given

γ > 0, an H∞ Filter attempts to find a solution for estimated

state X̂k, that satisfies

sup
X0,v,w

∑N
k=0 ||Xk − X̂k||

{

||X0 − X̄0||
2
P−1

0

+∑N
k=0 ||vk||

2
R−1

k

+∑N
k=0 ||wk||

2
Q−1

k

} < γ2

where X0,Xk ∈ R
3+2m is the robot(∈ R

3) and landmarks(∈
R

2m,m = 1,2, ...,N) states. w, v, are the process and measure-

ment noises with covariance of Qk ≥ 0, Dk > 0 respectively

and P0 > 0 is the initial state covariance. The above equation

alternatively means that the estimation error to the noise ratio

is less than a certain level of γ .

To ensure that the robot has a level of confidence about

its position, the measurement innovation is guaranteed to be

available. We made some assumptions as follows.

Assumption 1: Mobile robot is equipped with sufficient

proprioceptive and exteroceptive sensors.

Assumption 2: Landmarks are stationary and robot cannot

sense any occluded landmarks.

An initial study of intermittent measurements using HF has

been proposed by Liu et.al[11]. They designed the filter such

that to achieve better performance in two dimensional system

estimation whenever there is a packet loss during observations.

The suggested that a parameter-dependent technique is appli-

cable in the filter to ensure stability throughout estimation.

In this paper, we analyze the behavior of measurement

innovation towards partially loss measurements. The analy-

sis is mainly cover a case where both measurement data

from proprioceptive and exteroceptive sensors are not arrived.

Finite escape time[12], [13] is not considered in this paper.

A. H∞ Filter-Based SLAM

We consider a nonlinear discrete-time dynamical system as

follows.

θk+1 = θk + fθ (ωk,vk,δω ,δv) (1)

xk+1 = xk +(vk + δv)T cos[θk] (2)

yk+1 = yk +(vk + δv)T sin[θk] (3)

Lk+1 = Lk (4)

where θk is the mobile robot pose angle, and ωk, vk are

mobile robot turning rate and its velocity. While, xk,yk are

the x,y cartesian coordinate of the mobile robot and Lk ∈
R

2m,m = 1,2, ...N is each respective landmark location. vk

is the mobile robot velocity while ωk is the mobile robot

angular acceleration. Both control inputs have noises shown

by δω ,δv which defines noises on angular acceleration and

velocity respectively. We denote the robot and landmarks states

by Xk ∈ R
(3+2m) from this point. T is the sampling rate.

The process model for the landmarks is unchanged as the

landmarks are assumed to be stationary and are given. Under

HF algorithm, the prediction and update processes which starts

from an initial state is shown by

X̂k = Fx(X̂0,ω0,v0,0,0) (5)

where Fx is the transition matrix, and X̂k is the predicted robot

and landmarks states. The associated covariance Pk is shown

by

Pk = ∇ frP0[I− γ−2P0 + ∇H−1
k R−1

k ∇HkP0]
−1∇ f T

r

+∇GωvΣ0∇GT
ωv (6)

Here ∇ fr is the Jacobian evaluated from the mobile robot

motion in (1)-(4), Σ is the control noise covariance and ∇Gωv

is the Jacobian transformation for the process noise. When

T = 1,

∇ fr =









1 0 0 0

−vsinθ 1 0 0

vcosθ 0 1 0

0 0 0 I









(7)

where I is an identity matrix with an appropriate dimension.

The above expression can also be written as

Pk = ∇ frP0ψ−1
k ∇ f T

r + ∇GωvΣk∇GT
ωv (8)

where ψk = I + (∇HT
k R−1

k ∇Hk − γ−2I)P0. ∇Hk explains the

Jacobian transformation regarding the measurement process

for any landmark i and this is shown later.

The measurement process has the following equation.

zik+1
= ηk+1

[

ri

θi

]

= ηk+1

[

√

(xi − xk+1)2 +(yi − yk+1)2 + εri

arctan
yi−yk+1

xi−xk+1
−θk+1 + εθi

]

= ηk+1Hi(Xk+1)+ εriθi
(9)

where ri and θi is the relative distance and measurements

between robot and landmark i respectively. This equation show

that the mobile robot measures relative distance and angle from

a specific ith landmark with some associated noises of εri
, εθi

.
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η is a scalar quantity independent of observation time, k, either

take values of 1 or 0. For a measurement between mobile robot

and any landmark i, we have the following results.

∇Hk =

[

0 − dxk
r

− dyk
r

dxk
r

dyk
r

−1
dyk

r2 − dxk

r2 − dyk

r2

dxk

r2

]

(10)

where r =
√

(xi − xk)2 +(yi − yk)2, dxk = xi − xk and dyk =
yi − yk. Notice that in (9), unlike the standard HF algorithm,

η is added to the system. η = 1 means that the measurement

data are available and η = 0 show the opposite means.

Pr{η = 1} = p (11)

Pr{η = 0} = 1− p (12)

E[η ] = E[η2] = p (13)

The corrected state update is describe by

X̂k+1 = X̂k + Kk+1(Hk(Xk)−Hk(X̂k)) (14)

where Kk = Pk(I− γ−2Pk +∇HT
k R−1

k ∇HkPk)
−1. The difference

between EKF and HF exist in its gain and state covariance. γ
is not included in Kk and ψk, then the equation show the EKF

algorithm. Notice that in (14) onward, Hi is replaced by Hk to

indicate the Jacobian is evaluated at time k.

III. CONVERGENCE ANALYSIS FOR INTERMITTENT

MEASUREMENTS

Before further analyzing the convergence of intermittent

measurements, same notations by Huang et.al[3] are used. For

a mobile robot observing a landmark at point A, the Jacobian

matrix is given by

∇HA =
[

−e −A A
]

(15)

where

e =

[

0

1

]

A =

[

dxA
rA

dyA
rA

− dyA

r2
A

dxA

r2
A

]

(16)

with

dxA =
[

xi − xA

]

(17)

dyA =
[

yi − yA

]

(18)

rA =
√

dx2
A + dy2

A (19)

Measurement innovation can be a method to determine

whether estimations are successfully achieved. In HF, the

updated state is given by

x̂k+1 = x̂k + Kk+1Hk+1(xk − x̂k) (20)

= x̂k + Kk+1dk (21)

From above, we easily understood that the measurement

innovation gives some bounded error to the estimation. In

the case of intermittent observations, if there is a lost of

observation data at a specific time k(1 < k < ∞), then the

estimation at k probably acquire the previous value at k− 1

as ∇Hk+1(xk − x̂k) = 0. However we show in this paper,

the measurement innovation has some distinct value, which

specifically contributes the uncertainties information to the

system. The measurement innovation is found by subtracting

(14) from the mobile robot kinematics.

dk+1 = Fx(Xk)−
[

Fx(X̂k)+ Kk+1(Hk(Xk)−Hk(X̂k))
]

= (Fx −Kk+1Hk)(Xk − X̂k) (22)

After one-step prediction, it then further show that

dk+2 = (Fx −Kk+1Hi)(Xk − X̂k)

+Kk+2(HkXk+1 −HkX̂k+1) (23)

The term Fx −Kk+1Hi is very important as it determines the

system stability. For a linearized system especially in a case

of a one dimensional monobot(a robot with single coordinate

system), it has been shown that this term is marginally

stable and bounded[9]. In normal HF, it is known that the

convergence properties are similar to Kalman Filter if γ is set

to be large enough[6].

The investigation now proceeds to examine the SLAM

convergence in intermittent measurements.

Proposition 1: Let P0 = PT
0 > 0. For n−times successive

observations, a stationary mobile robot state covariance is

monotonically decreasing.

Proof: Given that the initial state covariance, P0 as

P0 =

[

Pvv 0

0 Pmm

]

where Pvv ∈ R
3×3 is the initial robot covariance and Pmm ∈

R
2m×2m,m = 1,2, ...N as the initial landmark covariance. If

measurement data is not missing, then the analysis can be

derived using the normal EKF algorithm. The covariance

updates is given by (6) and as the robot is non-moving, then

Pk = P0ψ−1

= [P−1
0 +(∇HT

k R−1
k ∇Hk − γ−2Ik)]

−1 (24)

If P0 = PT
0 ≥ 0, and utilizing (15) we found that as ∇HA =

[−HA A], we have the following equation. For n−times

observations, the state covariance exhibit the following.

Pn
k+1 =

(

P−1
0 +n∇HAk

T R−1
Ak

∇HAk
− γ−2Ik)

)−1
(25)

=

(

P−1
0 +n

[

−HT
Ak

AT
k

]

R−1
Ak

[

−HAk
Ak

]

− γ−2Ik)

)−1

(26)

Calculate further, we arrive in below equation.

Pn
k+1 =

[

P−1
vv +n(HT

Ak
R−1

Ak
HAk

− γ−2Ik) −nHT
Ak

R−1
Ak

A

−nAk
T RAk

−1HAk
P−1

mm +n(Ak
T R−1

Ak
Ak − γ−2Ik)

]−1

By Matrix Inversion Lemma, we understand that especially

whenever γ is choose to has bigger value, the state error

covariance is monotonically decreasing. This characteristics

shown the same characteristics as Kalman Filter.

A. Intermittent Measurements Analysis

This paper attempts to prove that even if there are some

missing measurements data, the measurement innovation is not

exactly unavailable but bound to some exact value. These in-

formation are important as it provides some variance whenever

the observations data are missing as stated by (21), which then

can be used to infer the measurement innovation covariance

for the system.
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Definition 1: Measurement data lost is defined whenever

measurement data is not arrived after one sample time and

occurred randomly in mobile robot observations.

The above definition describes that if a measurement is

unavailable at time k, then ηk = 0. We now demonstrates

how HF behaves if this is partially happened during mobile

robot observations. The expectation of state covariance can be

illustrated by e.g Sinopoli et.al[5] as

E[(zk+1 − ẑk+1)(zk+1 − ẑk+1)
T ]

= p∇Hk+1Pk+1∇HT
k+1

Therefore, if the measurement innovation at some specific

times is missing, then state covariance updates is unavailable

and thus it seems that the state covariance take the previous

state covariance data. In this respect, we show that the infor-

mation when the measurements are missing being bounded to

some respective value.

Lemma 1: If the measurement data is not available inter-

mittently at 1 < k < ∞ time, for a robot observing a landmark

and constantly move, the measurement innovation takes the

following expression.

dk = ηk−1Ak−1(Lmk−1
−Rk−1) (27)

where A is defined in (16) and d is the measurement inno-

vation. Lm and R shows the landmark and robot x,y location

respectively.

Proof: We begin the proof by analyzing the measurement

innovation for a specific time step[3].

d = z−HiX̂ (28)

= ηHiX + ωr1θ1 −ηHiX̂ (29)

= ηHi(X − X̂)+ ωr1θ1 (30)

= η
[

−e −A A
]





θ − θ̂
R− R̂

Lm − L̂m



+ ωr1θ1 (31)

= η
[

−e(θ − θ̂)−A(R− R̂)+ A(Lm − L̂m)
]

+ωr1θ1 (32)

where A is the Jacobian evaluated at the robot position and

landmarks respectively. Rearranging above and assuming no

noises yield

η [eθ + AR−ALm] = −d + η
[

eθ̂ + AR̂−AL̂m

]

(33)

For better visualization, the analysis moves to next time

update, that expressing the result in Jacobian evaluation in

different time based on the estimated position. This step is also

important as one time observation is insufficient to improve

the position estimation.

η1 [eθ + A1R−A1Lm] = −d1 + η1

[

eθ̂1 + A1R̂1 −A1L̂m1

]

(34)

η2 [eθ + A2R−A2Lm] = −d2 + η2

[

eθ̂2 + A2R̂2 −A2L̂m2

]

(35)

After an arrangement and subtracting above equations, we

arrive in

η1A−1
1 eθ −η2A−1

2 eθ = −A−1
1 d1 + A−1

2 d2 + η1A−1
1 eθ̂1

−η2A−1
2 eθ̂2 + η1R̂1 −η2R̂2

−η1L̂m1 + η2L̂m2 (36)

When the observation is not available at the 2−nd measurement

time, we found that

η1A−1
1 eθ = −A−1

1 d1 + A−1
2 d2

+η1A−1
1 eθ̂1 + η1R̂1 −η1L̂m1 (37)

A−1
2 d2 = A−1

1 d1 + η1(A
−1
1 e(θ − θ̂1)

−R̂r1 + L̂m1) (38)

∴ d2 = η1A1(Lm1 −R1) (39)

Therefore, even if the measurements data are intermittently

missing, we now understand that the estimation is still pos-

sible, especially for a stationary robot case. Measurement in-

novation provides sufficient information regarding the missing

measurement to the system and is employed to update the

estimation.

Recognize that η is representing the previous observation

which must be available in order to ensure that (39) is

applicable for update purposes. In other words, we distinctly

show that the measurement innovation when measurement data

is unavailable is defined by (39) without the notion of η .

Corollary 1: If a measurement data is missing intermit-

tently at 1 ≤ k ≤ ∞, the measurement innovation is bounded

to the following equation.

dk = ηk−1Ak−1(Lmk−1
−Rk−1) (40)

Proof: The proof is easily obtained by the above lemma.

It is observable that the measurement innovation is bounded

to dk+1 = γk−1Ak+1(Lmk
− Xrk

) if measurement data is not

available at 1 ≤ k ≤ ∞. Note that the measurement innovation

takes either positive or negative values, which also signifi-

cantly means its bounded limit.

Lemma 2: The measurement innovation is bounded to (41)

even if there are multiple loss of measurement data during

1 ≤ k ≤ ∞, observations if and only if Ak = Ak+1.

Proof: The proof is easily verified by the above Lemma 1

and therefore, is omitted.

Above Lemma 1, Lemma 2 and Corollary 1 may sufficiently

describe that, even if measurements data are missing at 0 ≤
k ≤ n, the mobile robot can estimate its location. And with

respect to the special matrix A, the solution to localization

is guaranteed to be available. Analyzing further the above

Lemma 1 and Corrollary 1, we can determine the relationship

between dk+1 and dk.

From (40), it has been demonstrated that the measurement

innovation is useful to infer the state error covariance. We

define the Measurement Innovation Error as dk − dk+1. The

measurement innovation error is used to evaluate the state

covariance behavior whenever measurement data is missing.

Theorem 1: If a measurement data is partially having lost

at 1≤ k ≤∞, then the measurement innovation error are shown

by the following.

e(θk−1 − θ̂k−1)+ Ak−1(R̂k−1 − L̂mk−1
) (41)
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The uncertainties is decreasing if below equations are satisfied.

(L̂mi
x
− R̂x) ≤

dyA

dxA

(R̂y − L̂mi
y
) (42)

dxA

r2
(L̂mi

y
− R̂y) ≤ θ̂k−1 −θk−1 +

dyA

rA

(L̂mi
x
− R̂x) (43)

This is when a robot is observing at point A and dxA, dyA and

rA are shown in (18),(19) and (20) respectively. Lmi
x
, Lmi

y
state

the landmark number in x− y location being observed by the

robot and R̂x is the measurement noise at time k−1. Else, the

uncertainties is increasing.

Proof: Lemma 1 has proven that the measurement inno-

vation when the measurement data is not available is equal

to (40). Furthermore, (40) also equivalently means that if

dk ≥ dk+1, then the state covariance is generally decreasing.

This fact is applied to analyze the measurement innova-

tion in a case where measurement data is not available.

To analyze the situation, it can be easily viewed that if

the Measurement Innovation Error |dk|− |dk−1| ≥ 0, then the

measurement innovation error gives information about the

robot confidence in position inference.

|dk|− |dk−1| = Ak(Lmk−1
−Xrk−1

)

−[−e(θk−1 − θ̂k−1)

−Ak−1(R− R̂k)

+Ak−1(Lmk−1
− L̂mk−1

)] (44)

If Ak = Ak−1, then to ensure the uncertainties is decreasing, it

must satisfy

|dk|− |dk−1| = e(θk−1 − θ̂k−1)−

Ak−1(L̂mk−1
− R̂k−1) ≥ 0 (45)

This condition is achieved such as if below equations are

fulfilled.

dxA

rA
(L̂mi

x
− R̂x) ≤

dyA

rA
(R̂y − L̂mi

y
) (46)

dxA

r2
A

(L̂mi
y
− R̂y) ≤ θ̂k−1 −θk−1 +

dyA

r2
A

(L̂mi
x
− R̂x) (47)

when a robot is observing at point A and dxA, dyA and rA

are shown in (17),(18) and (19) respectively. Lmi
x
, Lmi

y
state the

landmark number in x−y location being observed by the robot

and R̂x is the measurement noise at time k−1. Eq. (45) under

conditions of (46), (47) equivalently states the error becomes

bigger and not converges but bounded by dk. Remark that (46),

(47) are the estimation at k− 1 when the measurement data

is available. Moreover, from (45) it can be deduced that as it

have two opposite values, if (46), (47) are not satisfied, then

the measurement innovation error is decreasing.

Based on these results, it we expect that Kalman Filter based

SLAM has the same characteristics whenever the measurement

data is missing during mobile robot observations. However,

this study is left for future development.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments are conducted for above proposed theorems.

An E-puck robot is used to observe an uknown environment.

We observed the results when measurement data are missing

at 50[s],80[s] and 120[s] for 20[s], 2[s] and 1[s] observations

respectively. The experimental results are evaluated under an

environment that has a non-Gaussian noise as provided in

experimental parameters in Table 1. Note that the initial state

covariance and both process and measurement noises have

the appropriate dimensions to describes the whole system

behavior.

TABLE I
EXPERIMENT PARAMETERS

Sampling Time, T 0.1s

Process noise,Q distribution 1×10−7

Observation noise,R distribution min = [-0.4 -0.05]

max = [1 0.5]

γ 9

Robot Initial Covariance Pvv 1×101

Landmarks Initial Covariance Pmm 1×102

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−1.5

−1

−0.5

0

X coordinate(m)

Y
 c

o
o

rd
in

at
e(

m
)

        True

       Normal HF

       HF with intermittent

       measurements

Intermittent 

measurement

occurred

Fig. 2. Map construction between normal HF and HF with partially missing
measurement data

Fig.2 illustrates map construction between HF and HF with

intermittent measurements. It is viewable that at certain times,

the estimations are diverging when the measurement data are

not arrived as specified above. Even though the estimation

is diverging for some time, we observe that the estimation

still fairly shows good results for both robot and landmarks.

Besides, RMSE(Root Mean Square Error) are also evaluated

to support this result(Fig.3). There are not much differences

to the normal HF estimations.

Fig.4 explains about the state error covariance update re-

garding both mobile robot and landmarks states. The re-

sults consistently describes the same behavior as presented

on previous figure. The covariance update shows the same

characteristics to normal HF estimation if no measurement

data is arrived. The measurement innovation behavior suf-

ficiently defines the information when measurement data is

unavailable as presented in Fig.5. Some of information refer
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Fig. 4. State error covariance update characteristics

to the previous estimation while others increase or decrease

with respect to the previous estimation. Even though we

observed some difference between these two filter conditions

especially after 50[s], the estimations are still almost result in

the same outcome. Furthermore, we understand that, the filter

is not guaranteed to acquire to the previous information but

interestingly depend on the characteristics described by (40).

A. Discussion

Above experimental results have shown that even though a

measurement data is not arrived randomly at some time, the

estimation is still possible. Besides, these results also signifi-

cantly proved that HF has achieved a desired performance if

the γ are properly selected such that satisfying the condition

described in Section II. Furthermore, the finite escape time,

which is a problem in HF, is not occurred during the whole

observations.

V. CONCLUSION

This paper presented the result of intermittent measurements

of some missing measurement data when the robot observing

its environment. It has been demonstrated that even though the

data are missing, the robot is still able to estimate its location

in HF. The results are also consistent with the findings which
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Fig. 5. The measurement innovation characteristics during measurement data
loss at the specified time

is described in the literature. Furthermore, the measurement

innovation of HF finally arrived in the same as the normal

EKF without measurement data lost if measurements are

available after the data lost. The measurement innovation is

also bounded and thus enabling estimation to fairly be done

by the robot.
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