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Abstract: This paper deals with the passivity-based synchronized control of teleoperation considering po-
sition tracking and power scaling. In the proposed method, the motion and the force relation between the
master and slave robots can be specified freely. Using a passivity of the systems and Lyapunov stability meth-
ods, the asymptotic stability of teleoperation with communication delay and power scaling is proven. Several
experimental results show the effectiveness of our proposed method.
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1. INTRODUCTION

Teleoperation system is the extension of a person’s
sensing and manipulation capability to remote envi-
ronment. A typical teleoperation system consists of
the master robot, the slave robot, the human oper-
ator, the remote environment and the communica-
tion line. If only the master motion and/or force are
transmitted to the slave, the teleoperation system is
called unilateral. If, in addition, the slave motion
and/or force are transmitted to the master, the tele-
operation system is called bilateral.

In bilateral teleoperation, the master and the slave
are coupled via communication lines and communi-
cation delay is incurred in transmission of data be-
tween the master and slave sites. The delay in a
closed loop system can destabilize the system. It is
well known that the scattering transformation ap-
proach guarantees passivity of the communication
line with any constant communication delay [1], [2].
As shown in [3], [4], this approach drives the velocity
errors between the master and slave robots to zero,
but can only guarantees the position tracking error
to be bounded. Additionally, the scattering trans-
formation is necessary to calculate the algebra loop.
It is difficult to mount on a computer.

In [5], it is shown that multi passive systems with
any constant communication delay can be synchro-
nized. Moreover, the practical applicability of the
result is demonstrated in the problem of teleopera-
tion with any communication delay. Therefore, this
approach guarantees position and velocity errors to
zero without using scattering transformation.

In several tasks involving bilateral teleoperations,
such as telesurgery and teleoperation of huge robotics
for extra-vehicular activity in space application, the
master and slave act at different scales and there-
fore, it is necessary that the motion and the force
are transformed. This transformation is called as the
power scaling [6]. In [6], it is shown that a scaling of
exchanged power can be performed without affect-
ing passivity. However, in this case, the asymptotic
stability of position tracking errors is not guaran-

teed, because the scattering transformation approach
is used.

In this paper, we propose the passivity-based syn-
chronized control of teleoperation considering posi-
tion tracking and power scaling. In the proposed
method, the motion and the force relation between
the master and slave robots can be specified freely.
Using a passivity of the systems and Lyapunov sta-
bility methods the asymptotic stability of teleopera-
tion with communication delay and power scaling is
proven. Several experimental results show the effec-
tiveness of our proposed method.

2. DYNAMICS OF
TELEOPERATION

Assuming absence of friction and other disturbances,
the master and slave robot dynamics for n-degree-of-
freedom are given as [7]

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) = fim + Fop

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) = fis − Fenv , (1)

where the subscript ”m” and ”s” show the master
and the slave indexes respectively, qm, qs ∈ Rn×1

are the joint angle vectors, q̇m, q̇s,∈ Rn×1 are the
joint velocity vectors, τm, τs ∈ Rn×1 are the input
torque vectors, Fop ∈ Rn×1 is the operational torque
vectors applied to the master robot by human oper-
ator, Fenv ∈ Rn×1 is the environmental torque vec-
tors applied to the environment by the slave robot,
Mm, Ms ∈ Rn×n are the symmetric and positive
definite inertia matrices, Cmq̇m, Csq̇s ∈ Rn×1 are
the centripetal and Coriolis torque vectors and
gm, gs ∈ Rn×1 are the gravitational torque vectors.

It is well known that the above equations have
several fundamental properties as follows.

Property 1: The inertia matrix M(q) is sym-
metric and positive definite and there exist some pos-
itive constant m1 and m2 such that
0 < m1I ≤ M(q) ≤ m2I. (2)
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Property 2: Under an appropriate definition of
the matrix C(q, q̇), the matrix N = Ṁ(q)−2C(q, q̇)
is skew symmetric such that
NT = −N , xT Nx = 0. (3)
where x ∈ Rn×1 is any vector.

3. CONTROL OBJECTIVES

We would like to design τm, τs in (1) to achieve
a synchronized teleoperation with power scaling.

We define the position tracking error with power
scaling between the master and slave robots as

{

em(t) = α−1qs(t − T ) − qm(t)

es(t) = αqm(t − T ) − qs(t).
(4)

where α ∈ R is positive and any scaling factors.
The teleoperation system is said to be synchronized
if
{

ei(t) → 0 as t → ∞ i = m, s

ėi(t) → 0 as t → ∞ i = m, s.
(5)

4. CONTROL DESIGN

To achieve the synchronized teleoperation system,
we design the master and slave controllers.

4.1 Passivity-based Nonlinear Compensation

The master and slave input torque are given as
[5],

τm = −Mm(qm)Λq̇m − Cm(q̇m, qm)Λqm

+ gm(qm) + Fm

τs = −Ms(qs)Λq̇s − Cs(q̇s, qs)Λqs

+ gs(qs) + Fs, (6)

where Fm and Fs are the additional input torque
required for synchronized control in next section and
Λ ∈ Rn×n is a positive definite diagonal gain matrix.

Substituting (6) into (1), the master and slave
robot dynamics are represented as

{

Mm(qm)ṙm + Cm(qm, q̇m)rm = Fm + Fop

Ms(qs)ṙs + Cs(qs, q̇s)rs = Fs − Fenv,
(7)

where the vector rm and rs are the new outputs of
the master and slave robots and are given as

Fig. 1 The master and slave dynamics with nonlin-
ear compensation

{

rm(t) = q̇m(t) + Λqm(t)

rs(t) = q̇s(t) + Λqs(t).
(8)

There are defined by linear combinations of the joint
angle vectors and the joint velocity vectors. Fig. 1
shows a block diagram of the master and slave robots
with nonlinear compensation.

Then we have the following lemma.

Lemma 1: Consider the systems described by (7).
Define the inputs of the master and slave robot dy-
namics as ´τm = Fm + Fop and τ́s = Fs −Fenv and
the outputs as rm and rs respectively. Then, the
systems with the above input and outputs (Fig. 1)
are passive such that.
∫

t

0

rT

i (z)τ́i(z)dz ≥ −β, i = m, s. (9)

Proof: Define a positive definite function for the
systems as

Vi(ri(t)) =
1

2
rT

i (t)Mi(qi)ri(t), i = m, s. (10)

The derivative of this function along trajectories of
the systems are given by

V̇i =
1

2
rT

i Ṁiri + rT

i Miṙi

=
1

2
rT

i {Ṁi − 2Ci}ri
︸ ︷︷ ︸

=0 property 2

+rT

i τ́i

= rT

i τ́i, i = m, s. (11)

Then the master and slave robot dynamics guarantee
the passivity as follows.
∫ t

0

ri(z)T τ́i(z)dz = Vi(ri(t)) − Vi(ri(0))

≥ −V (ri(0)), i = m, s.

(12)

Using nonlinear compensation as (6), the master and
slave dynamics are passive with respect to the output
(8) that contains both position and velocity informa-
tion. Thus the teleoperation can be controlled in the
passivity framework for position and velocity signals
by the new output.

4.2 Synchronized Control Law with Power Scal-

ing

We propose the synchronized control law with power
scaling as follows,

{

Fm(t) = K(α−1rs(t − T ) − rm(t))

Fs(t) = K(αrm(t − T ) − rs(t)),
(13)

where K ∈ Rn×n is a positive definite diagonal gain
matrix, T is a constant communication delay. This
control law has a very simple structure compared
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Fig. 2 The synchronization control architecture
with power scaling

with the scattering based control in [4]. Fig. 1 shows
a block diagram of teleoperation system with power
scaling. The ”Master+NC” and ”Slave+NC” show
the master’s and slave’s reduced dynamics in (7).
The power scaling factors are located to both com-
munication lines. The proposed control structure is
also symmetric, i.e. the robots, the controllers and
the scaling factors are in same form.

5. STABILITY ANALYSIS

In this section we analyze the proposed synchro-
nized control law with a power scaling previously and
show that the control objectives are successfully ful-
filled. In the stability analysis that follows, we as-
sume that

1. The operator and the environment can be mod-
eled as passive systems with rm and rs as inputs
respectively.
2. The operational and the environmental torque Fop

and Fenv are bounded by functions of the signals rm

and rs respectively.
3. All signals belong to L2e, the extended L2 space.

Theorem 1: Consider the nonlinear teleoperation
with power scaling described by (7) and (13). Then
all signals in the system are bounded and the position
tracking errors given by (4) em,es and its derivatives
ėm, ės are asymptotically stable. Therefore the tele-
operation system is synchronized and power scaled.

Proof: Define a positive definite function for the
system as

Vms(x(t))

= αrT

m(t)Mm(qm)rm(t) + α−1rT

s (t)Ms(qs)rs(t)

+αeT

m(t)ΛKem(t) + α−1eT

s (t)ΛKes(t)

+2α−1

∫
t

0

{
F T

env(z)rs(z)
}

dz

+2α

∫
t

0

{
−F T

op(z)rm(z)
}

dz

+

∫
t

t−T

{
αrT

m(z)Krm(z) + α−1rT

s (z)Krs(z)
}

dz,

(14)

where Mm and Ms are positive definite (by property
1), α is positive, K and Λ are positive definite di-
agonal matrices. The operator and the environment

are passive (by assumption). Hence

2α−1

∫ t

0

{
F T

env(z)rs(z)
}

dz ≥ 0, (15)

2α

∫ t

0

{
−F T

op(z)rm(z)
}

dz ≥ 0. (16)

Thus the function Vms is positive definite. The
derivative of this function along trajectories of the
system with the property 2 are given by

V̇ms =2αrT

mFm + 2α−1rT

s Fs

+ αrT

mKrm − α−1rT

s (t − T )Krs(t − T )

+ α−1rT

s Krs − αrT

m(t − T )Krm(t − T )

+ 2αeT

mΛKėm + 2eT

s ΛKės. (17)

Using the facts that

αrT

mKrm − α−1rT

s (t − T )Krs(t − T )

= {αrm + rs(t − T )}T K{rm − α−1rs(t − T )}

(18)

α−1rT

s Krs − αrT

m(t − T )Krm(t − T )

= {α−1rs + rm(t − T )}T K{rs − αrm(t − T )},

(19)

Then we have

V̇ms = 2αrT

mFm + 2α−1rT

s Fs

−{αrm + rs(t − T )}T K{α−1rs(t − T ) − rm}

−{α−1rs + rm(t − T )}T K{αrm(t − T ) − rs(t)}

+2αeT

mΛKėm + 2α−1eT

s ΛKės. (20)

Substituting (13) into (20), we get

V̇ms = −(α−1rs(t − T ) − rm)T αK(α−1rs(t − T ) − rm)

−(αrm(t − T ) − rs)
T α−1K(αrm(t − T ) − rs)

+2αeT

mΛKėm + 2α−1eT

s ΛKės.

Substituting (8) and using (4), it can be rewritten
as

V̇ms = −(ėm + Λem)T αK(ėm + Λem)

− (ės + Λes)
T α−1K(ės + Λes)

+ 2αeT

mΛKėm + 2α−1eT

s ΛKės

= −ėT

mαKėm − eT

mαΛKΛem

− ėT

s α−1Kės − eT

s α−1ΛKΛes. (21)

Thus the derivative of the Lyapunov function V̇ms is
negative semi- definite.

To show the uniformly continuity of V̇ms, we con-
sider the derivative of V̈ms as follows,

V̈ms = −2ëT

mαKėm − 2ėT

mαΛKΛem

− 2ëT

s α−1Kės − 2ėT

s α−1ΛKΛes. (22)

The V̇ms is uniformly continuous, if the ëm, ës, ėm, ės,
em and es are bounded. Since Vms is lower-bounded
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by zero and V̇ms is negative semi-definite, we can
conclude that,

rT

mαMmrm ≤ Vms(x(0))

rT

s α−1Msrs ≤ Vms(x(0))

eT

mαΛKem ≤ Vms(x(0))

eT

s α−1ΛKes ≤ Vms(x(0)).

Using the fact that the inertia matrices Mm and
Mm are lower bounded by Property 1, the signals
rm, rs,em and es are bounded. Note that Laplace
transform of (8) yields strictly proper, exponentially
stable, transfer function between rm, rs and qm, qs

is given as,

Qi(s) =






1

s+λ1

· · · 0
...

. . .
...

0 · · · 1

s+λn




Ri(s) , i = m, s, (23)

where ”s” is the Laplace variable, the Ri(s) and
Qi(s) are the Laplace transform of the ri(t) and
qi(t) respectively. Since rm, rs ∈ L∞ and (23), it
is easy to see that q̇m(t), q̇s(t), qm(t), qs(t) ∈ L∞

and ėm, ės ∈ L∞. As the operational and the en-
vironmental torque are bounded by function of the
signals rm, rs respectively, Fop and Fenv are also
bounded. From (1), the master and slave accelera-
tion are bounded which given us that ëm, ës ∈ L∞.

Thus V̈ms is bounded and V̇ms is uniformly con-
tinuous. Applying Barbalt’s Lemma [8] we can see
that V̇ms → 0 as t → ∞. The signals em,es, ėm and
ės are asymptotically stable. Therefore the teleop-
eration system is synchronized and power scaled.

In the steady state, we can show that the contact
torque is transmitted to the master side.

Proposition 1: Consider the nonlinear teleoper-
ation with power scaling described by (7) and (13).
The following relationship is achieved in the steady
state

q̈i(t) = q̇i(t) = 0, qi(t) = qi, i = m, s. (24)

Furthermore, we obtain that the scaled contact torque
is accurately transmitted to the master robot side as
follows

Fop = KΛ(αqm − qs) = α−1Fenv (25)

Proof: In the steady state (24), the master and
slave dynamics (7) are reduced to

{

Fm = −Fop

Fs = Fenv

{

KΛ(αqm − qs)α
−1 = Fop

KΛ(αqm − qs) = Fenv.

The above equations give

Fop = KΛ(αqm − qs) = α−1Fenv. (26)

Therefore the scaled contact torque is accurately trans-
mitted to the master robot side.

Remark 1: From Theorem 1 and Proposition 1,
we can conclude the following properties
• α > 1 : The motion/force of the slave robot is
scaled up
• α < 1 : The motion/force of the slave robot is
scaled down
• α = 1 : The slave robot is operated in a same scale
Additionally the asymptotic stability is guaranteed
when the scaling factors is finite. Hence the pro-
posed method can specify the scale of the motion
and the force relationship between the master and
slave robots freely.

6. EVALUATION BY CONTROL
EXPERIMENTS

In this section, we verify the efficacy of the pro-
posed teleoperation methodology. The experiments
were carried out on a pair of identical direct-drive
planar 2 links revolute-joint robots as shown in Fig.
3. We also measure the operational and the environ-
mental torque (i.e. Fenv,Fop in (1)) using the force
sensors. The inertia matrices, the Coriolis matrices
and the gravitational torque are identified

Mi(qi) =

[
θ1 + 2θ3 cos(q2) θ2 + θ3 cos(q2)
θ2 + θ3 cos(q2) θ2

]

Ci(qi, q̇i) =

[
−θ3 sin(q2)q̇2 −θ3 sin(q2)(q̇1 + q̇2)
θ3 sin(q2)q̇1 0

]

gi(qi) = 0, i = m, s.

The parameters of robots are given as follows

θ1 = 0.3657[kgm2]

θ2 = 0.0291[kgm2]

θ3 = 0.0227[kgm].

Fig. 4 shows the experimental setup with a hard en-
vironment on the slave side. As a real-time operating
system, we use RT-Linux and 1 [ms] sampling rate

Fig. 3 Experimental setup
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Fig. 4 Slave and environment

is obtained. All experiments have been done with a
constant communication delay of 0.5 [s].

The controller parameters K and Λ are selected
as follows

K =

[
3 0
0 4

]

, Λ =

[
1.5 0
0 2

]

.

The scaling factor is selected as

α = 2.

Hence we expect that the motion/torque of the slave
robot is twice as much as those of the master robot.

Two kind of experimental conditions are given as
follows.
• Case 1: Free space
• Case 2: Contact with environment

All experimental results show that the stability is
guaranteed as Figs. 5-10.

Figs. 5 and 6 show the results of Case 1. From
Fig. 5, The joint angle responses of the slave are
about twice as much as those of the master as ex-
pected. Fig. 6 shows the result that the master re-
sponses are multiplied by two and the slave responses
are shifted to 0.5[s] to cancel the communication de-
lay. From Fig. 6, the joint angles of the slave ac-
curately track those of the master and the synchro-
nization with power scaling between the master and
slave robots is achieved.

Figs. 7 - 10 show the results of Case 2. As shown
in Figs. 7 and 8, when the slave robot is pushing
the environment (2.5-12.5 [sec]), the contact torque
is faithfully reflected to the operator. The opera-
tor can perceive the environment through the torque
reflection. The environmental torque responses are
about twice as much as operational torque responses
as expected. Figs. 9 and 10 show the results that
the master responses are multiplied by two and the
slave responses are shifted to the left. From Figs.
9 and 10, the environmental torque on contact are
accurately transmitted to the master side. When
the slave dose not contact with environment and the
operator forcing is negligible (12.5-18[sec]), the syn-
chronization with power scaling between the master
and slave robots is achieved.

In Fig. 9, there are some errors in the torque,
but it is seems to be due to the substantial devise

 

 

 

 

Fig. 5 Case 1: Time response in free space

 

 

 

 

Fig. 6 Case 1: Time response in free space
(Master response × 2)

coulomb friction of robots. These errors were not
observed when a simulation without such a friction
[9] is performed.

7. CONCLUSION

In this paper, we proposed the passivity-based
synchronized control of teleoperation considering po-
sition tracking and power scaling. In the proposed
method, the motion and the force relation between
the master and slave robots can be specified freely.
Using a passivity of the systems and Lyapunov sta-
bility methods the asymptotic stability of teleoper-
ation with communication delay and power scaling
was proven. Several experiments results showed the
effectiveness of our proposed method.

REFERENCES

[1] R. J. Anderson and M. W. Spong, ”Bilateral
Control of Teleoperators with Time Delay,”

1842



 

 

 

 

Fig. 7 Case 2: Contact with environment at 1st
joint

 

 

 

 

Fig. 8 Case 2: Contact with environment at 2nd
joint

IEEE Trans. on Automatatic Control, Vol. 34,
No. 5, pp. 494-501, 1989.

[2] G. Niemeyer and J. -J. E. Slotine, ”Telema-
nipulation with Time Delays,” The Int. J. of
Robotics Research, Vol 23, No.9, pp. 873-890,
2004.

[3] N. Chopra, M. W. Spong, R. Ortega and N.
E. Barabanov, ”On Position Tracking in Bilat-
eral Teleoperation,” Proc. of the ACC, pp. 5244-
5249, 2004.

[4] T. Namerikawa and H. Kawada, ”Symmetric
Impedance Matched Teleoperation with Posi-
tion Tracking”, Proc. of the CDC, 2006 (to be
published).

[5] N. Chopra and M. W. Spong,”On Synchroniza-
tion of Networked Passive Systems with Time
Delays and Application to Bilateral Teleopera-

 

 

 

 

Fig. 9 Case 2: Contact with environment at 1st
joint
(Master response × 2)

 

 

 

 

Fig. 10 Case 2: Contact with environment at 2nd
joint
(Master response × 2)

tion,” Proc. of the SICE An. Conf. 2005, pp.
3424-3429, 2005.

[6] K. Kosuge, T. Itoh, I. Naniwa and T. Fukuda,
”Passive Realization of Power scaling of Tele-
manipulator with Communication Time Delay,”
The JSME, Series C , Vol. 64, No. 621, pp. 304-
309, 1998 (in Japanese).

[7] C. Canudas de Wit, B. Siciliano and G. Bastin,
(Eds.), Theory of Robot Control, Springer-
Verlag, 1996.

[8] H. K. Khalil, Nonlinear systems, second edition,
Prentice-Hall, 1996.

[9] H. Kawada and T. Namerikawa, ”Passivity-
based Control of Teleoperation with Posi-
tion Tracking,” Technical Report of IEICE,
Vol.106, No.136 (NLP2006-42), pp.49-54, 2006
(in Japanese).

1843


	Main Menu
	Previous Menu
	Search CD-ROM
	Print

	Text1: SICE-ICASE International Joint Conference 2006
Oct. 18-21, 2006 in Bexco, Busan, Korea
	Text67: 89-950038-5-5 98560/06/$10 © 2006 ICASE


