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Abstract— This paper deals with an experimental evalu-
ation on H∞ DIA control of magnetic bearings with rotor
unbalance. H∞ control problem which treats a mixed Dis-
turbance and an Initial state uncertainty Attenuation (DIA)
control is expected to provide a good transient property,
and we confirmed that DIA control has a good rotational
performance by some experiments.

In this paper, we propose a modified control system
design ofH∞ DIA control in order to consider the periodic
disturbance for the magnetic bearings. In fact, we get a
controller taken a peak at specified frequency by adding a
frequency weighting function in generalized plant.

Experimental results show that the proposed robust control
approach is effective for improving rotational performance.

Index Terms— H∞ DIA Control, Magnetic Bearing System,
Rotor Unbalance, Rotational Performance

I. I NTRODUCTION

Active magnetic bearings are used to support and ma-
neuver a levitated object, often rotating, via magnetic force.
Because magnetic bearings support rotors without physi-
cal contacts, they have many advantages, e.g. frictionless
operation, less frictional wear, low vibration, quietness,
high rotational speed, usefulness in special environments,
and low maintenance. On the other hand, disadvantages of
magnetic bearings include the expense of the equipment,
the necessity of countermeasures in case of a power failure,
and instability in their control systems. However, there are
many real-world applications which utilize the advantages
outlined above[1], [2].

By the way,H∞ control has proven its effect for robust
control problem and it has been applied to a variety of
industrial products. a mixed Disturbance and an Initial-
state uncertainty Attenuation (DIA) control is expected to
provide a good transient characteristic as compared with
conventionalH∞ control[3]. Recently, hybrid/switching
control are actively studied, this method might be one of
the most reasonable approach to implement them.

We applied anH∞ DIA control to a magnetic bearing,
and confirmed that this control has a better transient
response[6]. But in its research, we did not consider a
rotation of the rotor. Therefore, the aim of this paper is to
improve rotational performance by considering the periodic
disturbance caused by unbalance of rotor while the rotor
is rotating. Many researchers have tackled the problem of
unbalance vibration via magnetic bearings[4], [5].

For that purpose, we propose a modified control system
design of H∞ DIA control in order to improve more
rotational performance of a magnetic bearing against the
periodic disturbance caused by unbalance of rotor.

In this paper, we apply anH∞ DIA control system
design of a magnetic bearing considering periodic distur-
bance. In fact, we get a controller taken a peak at specified
frequency by adding a frequency weighting function in
generalized plant. First we derive a mathematical model
of magnetic bearing systems considering rotor dynamics
and nonlinearities of magnetic force[6]. Then we set the
generalized plant which contains design parameter for
uncertainty, control performance and periodic disturbance.

Experimental results show that the proposed robust con-
trol approach is effective for improving more rotational
performance.

II. H∞ DIA CONTROL

Consider the linear time-invariant system which is de-
fined on the time interval [0,∞).

ẋ = Ax + B1w + B2u, x (0) = x0

z = C1x + D12u
y = C2x + D21w (1)

wherex ∈ Rn is the state andx0 = x(0) is the initial
state;u ∈ Rr is the control input;y ∈ Rm is the observed
output; z ∈ Rq is the controlled output;w ∈ Rp is the
disturbance. The disturbancew(t) is a square integrable
function defined on[0,∞). A, B1, B2, C1, C2, D12 and
D21 are constant matrices of appropriate dimensions and
satisfies that

• (A,B1) is stabilizable and(A,C1) is detectable
• (A,B2) is controllable and(A,C2) is observable
• DT

12D12 ∈ Rr×r is nonsingular
• D21D

T
21 ∈ Rm×m is nonsingular

For system (1), every admissible controlu(t) is given by
linear time-invariant system of the form

u = Jζ + Ky
ζ̇ = Gζ + Hy, ζ (0) = 0 (2)

which makes the closed-loop system given internally sta-
ble, whereζ(t) is the state of the controller of a finite



dimension; J , K, G and H are constant matrices of
appropriate dimensions. For the system and the class of
admissible controls described above, consider a mixed-
attenuation problem state as below.

Problem 1: H∞ DIA control problem [3]
Find an admissible control attenuating disturbances and
initial state uncertainties in the way that, for givenN > 0,
z satisfies

‖z‖2
2 < ‖w‖2

2 + xT
0 N−1x0 (3)

for all w ∈ L2[0,∞) and allx0 ∈ Rn, s.t., (w, x0) 6= 0.
Such an admissible control is called theDisturbance and
Initial state uncertaintyAttenuation (DIA) control.

III. SYSTEM DESCRIPTION ANDMODELING

The experimental setup of the magnetic bearing
system[7] is shown in Fig.1. The controlled plant is a 4-axis
controlled type active magnetic bearing with symmetrical
structure. The axial motion is not controlled actively. The
electromagnets are located in the horizontal and the vertical
direction of both sides of the rotor. Moreover, hall-device-
type gap sensors are located in the both sides of the vertical
and horizontal direction.

In order to derive a nominal model of the system, the
following assumptions are introduced[8].

• The rotor is rigid and has no unbalance.
• All electromagnets are identical.
• Attractive force of an electromagnet is in proportion

to (electric current / gap length)2.
• The resistance and the inductance of the electromagnet

coil are constant and independent of the gap length.
• Small deviations from the equilibrium point are

treated.

These assumptions are not strong and suitable around the
steady state operation, but if the rotor spins at super-high
speed, these assumption will be failed. Based on the above
assumptions and a mathematical model of a magnetic bear-
ing derived in [6], we considered the periodic disturbance
caused by unbalance of rotor, which synchronized with
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Fig. 1. Magnetic Bearing

rotational frequency. The obtained result is as follows,
[
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(4)

xv = [gl1 gr1 ġl1 ġr1 il1 ir1]
T

xh = [gl3 gr3 ġl3 ġr3 il3 ir3]
T

uv = [el1 er1]
T , uh = [el3 er3]

T

vv = [vml1 vmr1 vLl1 vLr1]
T

vh = [vml3 vmr3 vLl3 vLr3]
T

vuv :=

[
ε sin(pt + κ)
τ cos(pt + λ)

]

vuh :=

[
ε cos(pt + κ)
τ sin(pt + λ)

]

yv = [yl1 yr1]
T , yh = [yl3 yr3]

T

wv = [wl1 wr1]
T , wh = [wl3 wr3]

T

Av :=




0 I2 0

Kx1A1 0 Ki1A1

0 0 −(R/L)I2





Ah :=




0 I2 0

Kx3A1 0 Ki3A1

0 0 −(R/L)I2





Avh :=




0 0 0
0 A2 0
0 0 0





Bv = Bh :=




0
0

(1/L)I2





Cv = Ch :=
[

I2 0 0
]

Dv = Dh :=




0 0

A1 0
0 (1/L)I2





Ev :=




0 0

Ev1 0
0 0



 , Eh :=




0 0
0 Eh1

0 0



 (5)

Ev1 :=




−1 ll

(
1 − Jx

Jy

)

−1 −lr

(
1 − Jx

Jy

)



 (6)

Eh1 :=




1 ll

(
1 − Jx

Jy

)

1 −lr

(
1 − Jx

Jy

)



 (7)

A1 :=

[
1/m + l2m/Jy 1/m − l2m/Jy

1/m − l2m/Jy 1/m + l2m/Jy

]

A2 :=

[
Jx/2Jy −Jx/2Jy

−Jx/2Jy Jx/2Jy

]

where I2 ∈ R2×2 is unit matrix, and the subscripts
v and h in the vectors and the matrices stand for the
vertical motion and the horizontal motion of the magnetic



bearing, respectively. In addition, the subscriptvh stands
for the coupling term between the vertical motion and the
horizontal motion, andp denotes the rotational speed of
the rotor. ǫ, τ, κ, λ are unbalance parameters.Kx1 =
Kxl1 = Kxr1, Kx3 = Kxl3 = Kxr3, Ki1 = Kil1 = Kir1,
Ki3 = Kil3 = Kir3.

The equation (4) can is also expressed simply as

ẋg = Ag(p)xg + Bgug + Dgv0 + p2Egvu

yg = Cgxg + w0 (8)

wherexg := [xT
v xT

h ]T , ug := [uT
v uT

h ]T , v0 :=
[
vT

v vT
h

]T
,

vu :=
[
vT

uv vT
uh

]T
w0 =

[
wT

v wT
h

]T
andAg, Bg, Cg, Dg,

Eg are constant matrices of appropriate dimensions.

TABLE I

MODEL PARAMETERS

Parameter Symbol Value
Mass of the Rotor m 0.248[kg]
Length of the Rotor LR 0.269[m]
Distance between lm 0.1105[m]
Center and Electromagnet
Moment of Inertia aboutX Jx 5.05 · 10−6

[kgm2]
Moment of Inertia aboutY Jy 1.59 · 10−3

[kgm2]
Steady Gap G 0.4 × 10−3[m]
Coefficients offj(t) k 2.8 × 10−7

Resistance R 4[Ω]
Inductance L 8.8 × 10−4[H]

IV. CONTROL SYSTEM DESIGN

In this section, we design anH∞ DIA controller for
the magnetic bearing system based on the derived state-
space formula. Let us construct a generalized plant for the
magnetic bearing control system. First, consider the system
disturbancev0. Sincev0 mainly acts on the plant in a low
frequency range in practice, it is helpful to introduce a
frequency weighting factor. Hence letv0 be of the form

v0 = Wv1(s)w2 (9)

Wv1(s) =







I2 0
I2 0
0 I2

0 I2





 Wv0(s)

Wv0(s) = Cv0 (sI4 − Av0)
−1

Bv0

where Wv1(s) is a frequency weighting whose gain is
relatively large in a low frequency range, andw2 is a(1, 2)
element ofw . These values, as yet unspecified, can be
regarded as free design parameters.

Let us consider the system disturbancew0 for the output.
The disturbancew0 shows an uncertain influence caused
via unmodeled dynamics, and define

w0 = Ww(s)w1 (10)

Ww(s) = I4Ww0(s)

Ww0(s) = Cw0 (sI4 − Aw0)
−1

Bw0

whereWw(s) is a frequency weighting function andw1 is
a (1, 1) element ofw. Note thatI4 is unit matrix inR4×4.

Finally, let us consider the periodic disturbancevu. The
disturbancevu shows an uncertain influence via unbalance
of rotor mass. Because of the disturbancevu, a rotor of the
magnetic bearing causes a vibration which synchronized
with rotational frequency of rotor.vu is defined as below,

vu = Wv2(s)w3 (11)

Wv2(s) = I4Wvu(s)

Wvu(s) = Cvu (sI4 − Avu)
−1

Bvu

where Wv2(s) is a frequency weighting function which
has a peak of gain at specified frequency andw3 is a (1,3)
element ofw.

The frequency functionsWv1, Ww andWv2 in (9), (10)
and (11) are rewritten as equations in (12), (13) and (14).

ẋv1 = Av1xv1 + Bv1w2

v0 = Cv1xv1 + Dv1w2 (12)

ẋw = Awxw + Bww1

w0 = Cwxw + Dww1 (13)

ẋv2 = Av2xv2 + Bv2w3

vu = Cv2xv2 + Dv2w3 (14)

where the statexv1, xv2 and xw are defined asxv1 :=[
xT

v11 xT
v12 xT

v13 xT
v14

]T
, xv2 :=

[
xT

v21 xT
v22 xT

v23 xT
v24

]T
,

xw :=
[
xT

w1 xT
w2 xT

w3 xT
w4

]T
.

Next we consider the variables which we want to
regulate. In this case, since our main concern is in the
stabilization of the rotor, the gap and the corresponding
velocity are chosen; i.e.,

zg = Fgxg, (15)

Fg =







I2 0 0 0 0 0
0 I2 0 0 0 0
0 0 0 I2 0 0
0 0 0 0 I2 0







z1 = Θzg, Θ = diag
[

θ1 θ2 θ1 θ2

]
(16)

whereΘ is a weighting matrix on the regulated variables
zg, and z1 is a (1, 1) element ofz. This valueΘ, as yet
unspecified, are also free design parameters.

Furthermore the control inputug should be also regu-
lated, and we define

z2 = ρug (17)

whereρ is a weighting scalar, andz2 is a (1, 2) element
of z. Finally, let x :=

[
xT

g xT
v1 xT

v2 xT
w

]T
, where

xv1 denotes the state of the functionWv1(s), xv2 denotes
the state of the functionWv2(s), xw denotes the state
of the functionWw(s), and w :=

[
wT

1 wT
2 wT

3

]T
,

z :=
[

zT
1 zT

2

]T
, then we can construct the generalized

plant as in Fig.2 with an unspecified controllerK.

The state-space formulation of the generalized plant is
given as follows,
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ẋ = Ax + B1w + B2u
z = C1x + D12u
y = C2x + D21w (18)

where A, B1, B2, C1, C2, D12 and D21 are constant
matrices of appropriate dimensions.

A =







Ag DgCv1 EgCv2 0
0 Av1 0 0
0 0 Av2 0
0 0 0 Aw







B1 =







0 DgDv1 EgDv2

0 Bv1 0
0 0 Bv2

Bw 0 0





 , B2 =







Bg

0
0
0







C1 =

[
ΘFg 0 0 0

0 0 0 0

]

, D12 =

[
0
ρ

]

C2 =
[

Cg 0 0 Cw

]
, D21 =

[
Dw 0 0

]

The block diagram of the generalized plant with an
unspecified controllerK is shown in Fig.2.

Since the disturbancesw represent the various model
uncertainties, the effects of these disturbances on the error
vectorz should be reduced.

Next our control problem setup is defined as follows.

Control problem : find an admissible controllerK(s) that
attenuates disturbances and initial state uncertainties to
achieve DIA condition in (3) for generalized plant (18).

After some iteration in MATLAB environment, design
parameters are chosen as follows,

Wv0(s) =
40000

s + 0.1

Ww0(s) =
1.5(s + 1.07 × 104)(s + 2.51 × 103

± 4.35 × 103i)

(s + 5.34 × 104)(s + 5.0 × 10−1
± 5.03 × 103i)

Wvu(s) =
1000(s + 7.85 × 101

± 1.36 × 102i)

(s + 5.0 × 10−1
± 1.57 × 102i)

Θ = diag
ˆ

θv1 θv2 θh1 θh2

˜

θv1 = diag
ˆ

0.4 0.4
˜

,

θh1 = diag
ˆ

0.5 0.5
˜

θv2 = θh2 = diag
ˆ

0.0005 0.0005
˜

ρ = 8.0 × 10−7I4
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Fig. 4. Frequency Responses ofH∞DIA Controllers

Ww0(s) represents an uncertainty for the 1st bending
mode of the rotor at the resonance frequency800[Hz].
Frequency response ofWvu is shown in Fig.3.Wvu has
a high gain at specified frequency in order to attenuate the
vibration via unbalance of rotor. In Fig. 3,Wvu has a peak
of gain at25[Hz], therefore we can attenuate the amplitude
of the vibration at 1500[rpm] as rotational speed of rotor.

Direct calculations yield the 36-orderH∞ DIA central
controllerK and its frequency response is shown in Fig.4.
We can see that this controller has a peak of gain at25[Hz].
In other word, we can get a controller taken a peak at
specified frequency. Then, this designed DIA controller is
expected to show a good rotational performance in some
experiments.

The maximum value of the weighting matrixN in the
DIA condition (3) is given by

N = 9.951001 · 10−9 · I36. (19)



V. EVALUATION BY EXPERIMENTS

We conducted control experiments to evaluate properties
of the designedH∞ DIA controller. The objective of this
experimental comparison is to evaluate control performance
for rotational performance. In this section, we carried out
the two kinds of control experiments. First, I constructed
a switching control system using twoH∞ DIA controllers
and evaluated rotational performance of this system. Sec-
ond is evaluated rotational performance by singleH∞ DIA
controller.

The experimental results are shown in Figs.6-9.

A. Switching Control System Configuration

Switching control system configuration is shown in
Fig. 5. In Fig. 5, two controllers are located in parallel,
switching logic block is made judgments an appropriate
control input from rotational speed. In this switching con-
trol system, especially, this control system adjust the states
of unused controller without increasing them perpetually.
For this reason, controllers can be switched smoothly that
system is not to be unstable.

Controller1

Controller2
Magnetic
Bearing

Switching
      Logic

Reference

Output

Rotational Speed 

-
+

Fig. 5. Switching Control System Configuration

B. Performance Evaluation by Single Controller

The control performance for rotational rotor is evaluated
with a controller without considering unbalance(refered to
as K1) and a controller with considering unbalance(refered
to as K2). As the rotational experiments, we carried out
the free-run tests with varying rotational rotor speed from
3000[rpm] to 0[rpm]. Then we prepared twoH∞ DIA
controllers which have a peak of gain at16.67[Hz],25[Hz],
respectively.

In Figs.6-9, the horizontal axes show time and the
rotational speed changed from 3000[rpm] to 0[rpm]. The
vertical axes show the vertical displacement of the left side
of the rotor. By comparison Figs.6,7 with Figs.8,9, we can
see that Figs.8,9 has a partial attenuation of unbalance
rotor vibration around 16.67[Hz],25[Hz], respectively. In
Figs.8,9, a frequency that the amplitude of rotor vibration
is the best attenuated in actually is not same as a frequency
specified by the weighting functionsWvu. As this reason, if
the vibration of specified frequency appears, it is necessary
to spend a little time until attenuating its vibration. Then,
for varying the rotational rotor speed momentarily, the
amplitude of vibration is increase as soon as the amplitude
become smallest. Against this phenomenon, if we carry out
an experiment such that rotational rotor speed is constant,

the amplitude of vibration is able to avoid increasing
continuously.

C. Performance Evaluation by Switching Controller

In this section, we designed two controllers that have a
peak at 1500[rpm](25[Hz]) and 1000[rpm](16.67[Hz]), re-
spectively. Switching control experimental result is shown
in Fig. 10. A controller which has a peak at 1500[rpm] is
activated from 3000[rpm] to 1250[rpm]. On the one hand,
a controller which has a peak at 1000[rpm] is activated
from 1250[rpm] to 0[rpm]. Therefore, switching point is
1250[rpm]. In Fig. 10, We can see that each controller
has a good rotational performance for unbalance vibration.
because of switching control system, two attenuation points
are appeared in experimental result. Consequently, we
can see that switching control system which has plural
controllers is attenuated the amplitude of vibration at each
rotational speed.

The proposedH∞ DIA controller shows a better rota-
tional performance for varying rotational speed tests.

VI. CONCLUSION

This paper dealt with an experimental evaluation onH∞

DIA control of magnetic bearings with rotor unbalance.
First we derived a mathematical model of magnetic

bearings, and constructed a generalized plant considering
the periodic disturbance caused by unbalance of rotor. Then
we set some design parameters for uncertainty, control
performance and periodic disturbance in the generalized
plant.

Finally, several experimental results of rotational per-
formance with varying rotational speed showed that the
proposedH∞ DIA robust control approach was effective
for improving the rotational performance.
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