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ABSTRACT

In this paper, a linear robust control system design based on µ-synthesis is proposed for impedance shaped
2-DOF direct-drive robot manipulators in bilateral master-slave system with environmental uncertainties and
communication delay. A general condition based on the structured singular value µ for robustness of a bilateral
manipulator is derived. The proposed control methodology can guarantee the robust stability and the robust
performance for environmental uncertainty, perturbation of operator dynamics, perturbation of master and slave
robot manipulator dynamics and constant communication delay of the master-slave system. Several experimental
results show the effectiveness of our proposed approach for various environmental uncertainties and constant
communication delay.

Keywords: Robust Control, Master-Slave Robotic System, µ-Synthesis, Environmental Uncertainties, Constant
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1. INTRODUCTION

Master-slave system has been well known as one of the extension of a person’s sensing and manipulation capability
to a remote location.1, 2 In bilateral master-slave system, the slave manipulator is controlled by an operator
through the master manipulator, while the contact force of the slave manipulator with the environment is reflected
back to the operator through the master manipulator.3, 4

The goal of master-slave system control is to achieve transparency while maintaining stability under any
operating conditions and for any environment including communication delay.5, 6 Several previous studies for
this robust stability problem in teleoperation have been done1, 7et. al.. However the teleoperation problem
including multi-degree of freedom robot dynamics and structure uncertainties have not been fully dealt with.3

In this paper, a robust controller based on µ-synthesis is proposed for impedance shaped 2-DOF direct-drive
robot manipulators in bilateral master-slave system with environmental uncertainties and communication delay.
A general condition based on the structured singular value µ for robustness of a bilateral manipulator is derived.
The proposed control methodology can guarantee the robust stability and the robust performance for all these
uncertainties of the master-slave system.

Several experimental results show the effectiveness of our proposed approach for various environmental un-
certainties and constant communication delay.

2. DYNAMICAL PROPERTY OF MASTER-SLAVE SYSTEM CONSTRUCTED
WITH 2-DOF ROBOT MANIPULATORS

Our Master-Slave teleoperation system is illustrated in Fig.1. It is constructed with 2-DOF Direct-Drive robot
master manipulator, 2-DOF DD robot slave manipulator, an operator and an Environment. We derive a math-
ematical model for the Master-Slave teleoperation system with various uncertainties below in this section.
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Figure 1. Master-Slave system with 2-DOF manipulators

2.1. Robot Dynamics of 2-DOF Robot Manipulator

Let us consider the robot dynamics first. The robot dynamics of master and slave manipulators are given in
these equations respectively.

M(θ)θ̈ + C(θ, θ̇) + G(θ) = τm + JT (θ)fm (1)

M(θ)θ̈ + C(θ, θ̇) + G(θ) = τs − JT (θ)fs (2)

where θ, θ̇, θ̈ denote the link position, velocity and acceleration vectors, respectively, M(θ) represents the link
inertia matrix, C(θ, θ̇) represents the centrifugal-Coriolis matrix, G(θ) represents the gravity effects, τm, τs

represent the torque input vectors of master and slave manipulators, respectively, fm, fs are the operator force
to the master manipulator and the slave force to the environment, respectively, and J is the geometric Jacobian
matrix.

Let X(t) = [x(t) y(t)]T denote the vector of the position of the end-effector frame, then the kinematic model
of the manipulator gives the relationship between θ = [θ1 θ2]

T and X, and the differential kinematic model gives
the relationship between θ̇ and Ẋ, respectively

X = P (θ) (3)

Ẋ = J(θ)θ̇ (4)

where J(θ) is the Jacobian matrix.

The time derivative of (4) gives the acceleration relationship in the form

θ̈ = J−1(θ)(Ẍ − J̇(θ)θ̇). (5)

2.2. Linearization of Robot Dynamics by Impedance Shaping

Impedance shaped representation of the master and the slave robot dynamics should be given as in.3

MmẌm + DmẊm + KmXm = ZmẊm

= fkm + fm (6)

MsẌs + DsẊs + KsXs = ZsẊs

= fks − fs (7)

where the desired master and slave impedances Zm and Zs are defined, respectively as follows.

Zm = Mms + Dm +
Km

s
(8)

Zs = Mss + Ds +
Ks

s
(9)

Here Mm, Ms, Dm, Ds, Km and Ks are all 2 × 2 real matrices and they are, respectively, the master and slave
masses, damping and stiffness matrices in the desired impedance model where we apply the standard assumption
Km = Ks = 0 in the following.
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fkm and fks denote the master and slave actuated forces, and they are defined as fkm = [fkxm, fkym]T and
fks = [fkxs, fkys]

T in the task space, respectively.

Substitute the equations (6) and (5) to the equation (1) , then the impedance shaping law for the master
manipulator is given by

τm = M(θ){MmJ(θ)}−1{−MmJ̇(θ)θ̇ − DmJ(θ)θ̇ + fm + fkm} + C(θ, θ̇) + G(θ) − JT (θ)fm.

(10)

The impedance shaping law for the slave manipulator is also given as

τs = M(θ){MsJ(θ)}−1{−MsJ̇(θ)θ̇ − DsJ(θ)θ̇ − fs + fks} + C(θ, θ̇) + G(θ) + JT (θ)fs.

(11)

These impedance shaping laws can realize the ideal mechanical impedance (6)-(9).

2.3. Operator and Environmental Dynamics

The dynamics of the operator interacting with the master and the dynamics of the environmental interacting
with the slave are modeled by the following equations, respectively,

Zop(s)Ẋm = fop − fm (12)

Zenv(s)Ẋs = fs, (13)

where fop is an external force supplied by the operator hand, and the operator hand impedance Zop and the
environment impedance Zenv are defined, respectively as follows,

Zop(s) = Mops + Dop +
Kop

s
(14)

Zenv(s) = Menvs + Denv +
Kenv

s
. (15)

Here Mop, Menv, Dop, Denv, Kop and Kenv are all 2 × 2 real matrices and they are, respectively, the masses,
damping and stiffness matrices in the impedance models.

3. CONTROL SYSTEM DESIGN

3.1. Configuration of Feedback Control System

For the feedback linearized and decoupled 2-DOF master and slave robot dynamics, the control system is con-
structed as shown in Fig.2.

The feedback controller Kx(s) and Ky(s) are independently designed for each X and Y axis in the task space.
The all behavior in both X and Y dynamics are same in this problem setup. Then we design the feedback control
system for only X axis and apply the obtained controller Kx(s) = Ky(s) to the Y axis control system.

The following treats only the control system design for X axis.

3.2. Regulation Performance for position and velocity reference

The control performance for position and velocity control problem in the master-slave system is defined in this
section.

First we denote the intervening impedance model of the master-slave system in Fig.34 and its mathematical
model is given in (16).

fmx − fsx = Zi(s)vms
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Figure 2. Feedback control system

Zi(s) = mis + di +
ci

s
, vms =

vm + vs

2
(16)

where Zi(s) is a desired intervening impedance and mi, di, ci are the mass, damping and stiffness scalar in the
impedance models. vms is an average of the master velocity and the slave velocity.

Consider the position error e and the desired error of the master-slave system

e = xm − xs, ed = λ
fmx + fsx

2
, (17)

where xm and xs are the master position and the slave position, respectively.

Equation (17) represents a behavior of the error dynamics of the master and slave manipulators and λ(≥ 0)
is a compliance parameter which can adjust a relative position of the master and slave manipulator.4

Equation (16) shows a behavior of the average velocity against external relative force, which define a charac-
teristic of the desired intervening impedance Zi(s).

ci

midi

fmx fsx1
λ

Figure 3. Intervening impedance model
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Let vmsd denote the desired velocity as

vmsd =
1

Zi

(fmx − fsx). (18)

Consider the control performance indexes erel, eabs as below. Then the final control performance problem is
to find a controller Kx(s) which minimize these two indexes erel, eabs simultaneously.

erel = ed − e, eabs = vmsd − vms (19)

3.3. Robustness for perturbation of the impedance model

Let Zmx(s) and Zsx(s) denote the X-axis components of master and slave impedance model Zm(s) and Zs(s),
respectively.

Zmx(s) and Zsx(s) are defined as

Zmx(s) = Ẑmx(s) + δZmx(s) (20)

Zsx(s) = Ẑsx(s) + δZsx(s), (21)

where Ẑmx(s) are Ẑsx(s) nominal values and δZmx(s) are δZsx(s) are perturbations caused by neglected nonlin-
earities and exogenous disturbances.

Further, δZmx, δZsx are defined as

δZmx(s) = δmms + δbm (22)

δZsx(s) = δmss + δbs, (23)

where δmm, δms, δbm, δbs are the mass, damping and stiffness scalar in the impedance models. Assume these
values of impedance perturbation are bounded as |δmm| ≤ ∆mm, |δms| ≤ ∆ms, |δbm| ≤ ∆bm, |δbs| ≤ ∆bs.

Let Wm(s) and Ws(s) denote the weighting functions as

Wm(s) = ∆mms + ∆bm,
Ws(s) = ∆mss + ∆bs. (24)

Finally we have

|δZmx(jω)| =
√

δm2
mω2 + δb2

m ≤
√

∆m2
mω2 + ∆b2

m

= |Wm(jω)|, ∀ω ∈ R (25)

|δZsx(jω)| =
√

δm2
sω

2 + δb2
s ≤

√
∆m2

sω
2 + ∆b2

s

= |Ws(jω)|, ∀ω ∈ R (26)

These equations can be represented by using ∆m, ∆s(‖∆m‖∞ ≤ 1, ‖∆s‖∞ ≤ 1) as

Zmx(s) = Ẑmx(s) + δZmx(s)
= Ẑmx + Wm∆m (27)

Zsx(s) = Ẑsx(s) + δZsx(s)
= Ẑsx + Ws∆s (28)
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3.4. Robustness for perturbation of Operator and Environment

Let δZop and δZenv define the perturbation impedances of the operator impedance Zmx(s) and the environment
impedance Zsx(s) and assume they are norm bounded as

|δZop(jω)| ≤ |Wop(jω)|, ∀ω ∈ R (29)

|δZenv(jω)| ≤ |Wenv(jω)|, ∀ω ∈ R. (30)

Then Zmx(s) and Zsx(s) can be represented as

Zop(s) = Ẑop(s) + δZop(s)

= Ẑop + Wop∆op (31)

Zenv(s) = Ẑenv(s) + δZenv(s)
= Ẑenv + Wenv∆env (32)

where Ẑop(s) and Ẑenv(s) are nominal models, and ∆op and ∆env are bounded as ‖∆op‖∞ ≤ 1, ‖∆env‖∞ ≤ 1.

3.5. Robustness for Time Delay

It is well known that the time delay e−jωT is infinite-dimensional in polynomial space and cannot be represented
exactly in the model. However it can be treated as a multiplicative perturbation of the plant model in the H∞/µ
control framework shown in Fig.4. For all ω and 0 < L < Lmax, the following inequality is achieved.5

|e−jωL − 1| ≤ |
2.1jω

jω + 1
Lmax

| (33)

The time delay e−Ls(0 < L < Lmax) can be expressed as a multiplicative uncertainty by the weighting
function Wt and the normalized uncertainty ∆t(‖∆t‖∞ ≤ 1), where Wt is given by

Wt(s) =
2.1s

s + 1
Lmax

. (34)

3.6. Construction of the Generalized Plant

The above control objectives are itemized as

• Regulation Performance for Position and Velocity Reference

• Robustness for perturbation of the impedance model

• Robustness for perturbation of Operator and Environment

• Robustness for Time Delay

(a) (b) (c)

PPP

Wt ∆t

e−Ls

e−Ls − 1

Figure 4. Time delay uncertainty
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This multiple control objectives can be simultaneously specified in the robust µ-synthesis framework. Consider
the generalized plant in Fig.5 to solve this problem, where dm and ds are exogenous force disturbances to
master and slave manipulators and Wd is an weighting function, Wrel(s) and Wabs(s) are weighting functions
for regulation performance, Wum(s) and Wus(s) are weights for control inputs and nv is an exogenous sensor
disturbance.

In order to formulate the robust performance problem, the fictitious performance uncertainty block ∆perf

(‖∆perf‖∞ ≤ 1) is introduced, and the generalized plant in Fig.5 is transformed into the LFT form in Fig.6 with
the structured uncertainty.
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Figure 5. Generalized plant with uncertainties
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Figure 6. Robust performance framework
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Let ∆mss denote the block structure as

∆mss = diag[∆op,∆env,∆m,∆s,∆t,∆perf ], (35)

where there six uncertainties have complex value and appropriate dimensions. The H∞ norm of these six
uncertainties are normalized.

Then the robust performance condition is given by the following structure singular value µ test.

sup
ω∈R

µ∆mss
[Fl(P (jω),K(jω))] < 1 (36)

4. EVALUATION BY EXPERIMENTS

4.1. Control System Design

We designed a robust controller by using MATLAB µ-Analysis and Synthesis Toolbox.

First, the parameters for the linearized impedance shaped model are chosen as follows.

mm = ms = 2.0[kg], dm = ds = 0.2[Ns/m]

mop = 1.0[kg], dop = 2.0[Ns/m], kop = 10.0[N/m]

menv = 0[kg], denv = 0[Ns/m], kenv = 100.0[N/m]

mi = 1.0[kg], di = 0.01[Ns/m], ci = 0[N/m]

λ = 0[m/N]

The design parameters for the robust control system design are selected based on experimental trial and error
and the final set of design parameters is as follows.

Wrel =
2200

s + 10
, Wabs =

80

s + 10

Wum = Wus =
0.1s + 0.01

s + 1000
, Wd = 1

We set that generalized plant in Fig.5 includes the following parametric uncertainties which are design pa-
rameters for calculating of controllers.

• The allowable maximum time delay Lmax = 15[msec].

• 5% perturbation of impedance models of master and slave.

• 20% perturbation of impedance model of operator.

• 10% perturbation of impedance model of environment.

After the 2nd D-K iteration, the value of µ of the closed-loop system is less than 1 and the robust performance
condition is achieved. The µ plot is shown in Fig.7.

4.2. Experimental Conditions

Fig.8 shows the experimental setup of the spring environment on the slave manipulator. The master manipulator
is not connected with the spring. We impose the pseudo communication time delay generated in the host
computer.

Two kinds of experimental environments are given as follows.

• Case 1: Slave Manipulator is restricted by spring I (k1 = 100[N/m]) and the communication time delay
is 0[msec].

• Case 2: Slave Manipulator is restricted by spring II (k2 = 110[N/m]) and the communication time delay
is 15[msec].
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4.3. Experimental Results and Discussion

For the comparison, the conventional force reflecting servo type PD controllers are employed8 as shown in Fig.9.
Force feedback is applied for the master manipulator and the following P controller Kf (s) is employed.

Kf (s) = KPf (37)

Here KPf is a propotional gain. On the other side, a position feedback is applied for the slave manipulator. To
avoid vibration at the high frequency range, the following saturated PD controller Kp(s) is employed. By using
this controller Kp(s), it is expected to suppress the control gain in the high frequency.

Kp(s) =
KDps + KPp

as + 1
(38)

Here, KPp,KDp are propotional and derivative gains respectively. a is chosen as a = 7×10−3, and KPf ,KPp,KDp

are selected for each environment as shown in Table 1.

Experimental results on X-axis have the same performance on Y axis in this system, then only results on
Y -axis are shown.

Fig.10 shows the results with the Case 1 via the proposed µ controller and the conventional force reflecting
servo controller. They show time responses of Y -axis position signals and Y -axis force signals of both of master
and slave manipulators. This figure shows that the stability with both of two controllers is guaranteed.

Fig.11 shows the experimental results with Case 2 environment and also shows that the stability with both of
two controllers is guaranteed. However, the conventional force reflecting servo controller shows a big vibration.

Note that the controller gain in FRST is tuned for each environment and two sets of controller gain are chosen
in this experimental evaluation. On the other side, a µ controller is used for all experiments.

Fig.12 shows absolute value of all experimental position error data between master and slave manipulators
with two controllers. The maximum position error of µ controller is about 15[mm] in the (a)Case 1 and is

Table 1. Parameters of Kf (s) and Kp(s)

Case1 Case2
KPf 3 1
KPp 350 300
KDp 50 20

+

+

fm

fs
Kf (s)

Kp(s)

−

−

master

slave
Xm

Xs

Figure 9. Force reflecting servo type (FRST)
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about 25[mm] in the (b)Case 2. On the other side, the maximum position error of FRST is about 19[mm] in
the (a)Case1 and is about 24[mm] in the (b)Case2. Compare the increase of position error of µ controller with
that of FRST controller whose gain is tuned again, we can see that the increases of position error with both
controllers are almost same for the environmental change from (a)Case1 to (b)Case2.

Fig.13 shows absolute value of all experimental force error data. The maximum force error of µ controller is
about 1[N] in the (a)Case 1 and is about 2[N] in the (b)Case 2. We can see the force error with the (b)Case 2
via FRST controller is larger, though the controller gain is tuned again. This shows that the increase of force
error with the proposed µ controller is smaller for the environmental change from (a)Case 1 to (b)Case 2.

These results means µ controller has a better robust performance for environmental uncertainties and the
communication delay. Actually the robust performance is theoretically guaranteed for these uncertainties via
the µ controller.

(a) µ (b) FRST

Figure 10. Experimental results : Case 1 (Slave restricted by k1, with 0[msec] time delay)

(a) µ (b) FRST

Figure 11. Experimental results : Case 2 (Slave restricted by k2, with 15[msec] time delay)
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(a) Case 1 (b) Case 2

Figure 12. Absolute value of all experimental position error data between master and slave manipulators.

(a) Case 1 (b) Case 2

Figure 13. Absolute value of all experimental force error data between master and slave manipulators.
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5. CONCLUSION

In this paper, a robust controller based on µ-synthesis was proposed for impedance shaped 2-DOF direct-drive
robot manipulators in bilateral master-slave system with environmental uncertainties and communication delay.

The dynamics of 2-DOF master-slave manipulator was linerized by using the impedance shaping, and also the
dynamics of environment and operator was expressed by using the impedance model. The master slave system
of two robot manipulators, environment and operator were integrated and the generalized plant was constructed.
The control system that achieves the robust performance for communication delay and the perturbation of the
impedance models of manipulators, operator and environment was designed by using µ-synthesis.

The proposed control methodology can guarantee the robust stability and the robust performance for all the
following uncertainties of the master-slave system.

• 15[msec] constant communication delay.

• 5% perturbation of impedance models of master and slave.

• 20% perturbation of impedance model of operator.

• 10% perturbation of impedance model of environment.

Experimental results showed the effectiveness of our proposed approach for various environmental uncertain-
ties and the communication delay.

Future work is to extend this robust control method to guarantee the robust performance for a time varying
communication delay.9–12
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