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Abstract

This paper deals with H∞ DIA control for robust performance of magnetic suspension systems. H∞ DIA control is

an H∞ control problem which treats a mixed Disturbance and an Initial-state uncertainty Attenuation(DIA) and

supplies H∞ controls with good transients. H∞ DIA controller has a good initial response property, however its

robust performance might be improved. We propose H∞/µ DIA Control which is to find a multi-objective controller

to achieve both the H∞ DIA condition for good initial responses/transient responses and the structured singular value

µ condition for robust performance. We apply this proposed approach to magnetic suspension systems, and design a

robust controller which has both good properties. Finally simulation and experimental results show effectiveness of

the proposed control system design framework.

Introduction

Conventional H∞ control attenuates the only effect of disturbances on controlled outputs and is originally
defined under the assumption that the initial states of the system are zero. If the initial states are non-zero,
some transients properties with the system applying an H∞ control will deteriorate. We proposed an H∞
control which achieves a mixed Disturbance and Initial-state uncertainty Attenuation in controlled outputs
(Namerikawa et.al., 2004). This mixed attenuation H∞ control (H∞ DIA Control) has good initial/transient
response properties (Namerikawa et.al., 2003), however its robust performance might be improved. There are
some previous works on studying about control performance of transients property and robust performance
(Yang et.al., 2002; Uchida et.al., 2003). Yang et. al. (2002) utilized adaptive robust nonlinear control and
Uchiyama et. al. (2003) applied 2-degree of freedom control with µ-synthesis. Both results are effective, but
the only problem here is a complexity of their implementations and a fragileness to initial state uncertainties.

To achieve the good transient property and robust performance under the initial state uncertainties of the
plant, we apply a D-K iteration technique (Packard et.al., 1993) for improving robust performance to H∞ DIA
control. Here, H∞/µ DIA Control is to find a multi-objective controller to achieve H∞ DIA condition for good
initial responses/transient responses and the structured singular value µ condition for robust performance
(Young et.al., 1997).

This proposed approach is applied to the magnetic suspension system (Fujita et.al., 1995) and its effectiveness
is evaluated via some control experiments. Magnetic suspension systems can suspend a magnetic body by
magnetic force without any contact (Fujita et.al., 1995), which requires feedback control in order to be
workable. Recently, magnetic suspension systems including active magnetic bearings (Hu et.al., 2003) and
also magnetic filed control (Storset et.al., 2002) seem to be one of the hot topics in control application field.
Nonlinear control approaches are recently focused in this field (Yang et.al., 2002; Hu et.al., 2003; Storset
et.al., 2002), but our approach taken here is a reliable linear robust control methodology (Namerikawa et.al.,
2004; Packard et.al., 1993).

Finally, compared with the conventional H∞ DIA controller, usefulness and effectiveness of the proposed
H∞/µ DIA control design framework considering initial-state uncertainty will be shown via some simulation
and experimental results for transient responses and for improving robust performance.

Problem Statement

Consider the linear time-invariant system which is defined on the time interval [0,∞) and described by

ẋ = Ax + B1w + B2u, x (0) = x0
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z = C1x + D12u
y = C2x + D21w (1)

where x ∈ Rn is the state and x0 is the unknown initial state; u ∈ Rr is the control input; y ∈ Rm is the
observed output; z ∈ Rq is the controlled output; w ∈ Rp is the disturbance. Without loss of generality,
we regard x0 as the initial-state uncertainty, and x0 as a known initial-state case. The disturbance w(t) is
a square integrable function defined on [0,∞). A, B1, B2, C1, C2, D12 and D21 are constant matrices of
appropriate dimensions and satisfies that

• (A,B1) is controllable and (A,C1) is observable

• (A,B2) is controllable and (A,C2) is observable

• DT
12D12 ∈ Rr×r is nonsingular

• D21D
T
21 ∈ Rm×m is nonsingular

For system (1), every admissible control u(t) is given by a linear time-invariant system of the form

u = Jζ + Ky
ζ̇ = Gζ + Hy, ζ (0) = 0 (2)

which makes the closed-loop system given by (1) and (2) internally stable, where ζ(t) is the state of the
controller of a finite dimension; J , K, G and H are constant matrices of appropriate dimensions.
For the system and the class of admissible controls described above, consider the H∞/µ DIA control problem
to consider both of transient response and robust performance under the initial state uncertainty of the
plant.

H∞DIA Control Problem

Find an admissible control attenuating disturbances and initial state uncertainties in the way that, for given
N > 0, z satisfies

‖z‖2
2 < ‖w‖2

2 + xT
0 N−1x0 (3)

for all ω ∈ L2[0,∞) and all x0 ∈ Rn, s.t., (w, x0) �= 0.

We call such an admissible control the Disturbance and Initial state uncertainty Attenuation (DIA) control.
The weighting matrix N is a measure of relative importance of the initial-state uncertainty attenuation to
the disturbance attenuation (Namerikawa et.al., 2004).

µ-Synthesis Problem

LFT and µ-synthesis (Packard et.al., 1993; Young et.al., 1997) have come to play an important role in control
system design and proved a uniform frame work for realization, analysis and synthesis for uncertain systems
in Figure 1, where ∆ is a structured uncertainty and P is a generalized plant and K is a controller. The
block structure ∆ is generally defined as

∆ = diag[δ1Ir1, · · · , δSIrS ,∆1, · · · ,∆F ] (4)
: δi ∈ R, ∆j ∈ Cmj×mj

For Consistency among all the dimensions, we must have

S∑
i=1

ri +
F∑

j=1

mj = n (5)

Here it is well known that the structured singular value µ∆(M) is defined for matrices M ∈ Cn×n with the
block structure ∆ as

µ∆(M) =
1

min{σ̄(∆) : ∆ ∈ ∆, det(I − M∆) = 0} (6)
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unless no ∆ ∈ ∆ makes (I − M∆) singular, in which case µ∆(M) := 0 (Packard et.al., 1993). Then the
control problem is to find the controller K(s) which achieves the following robust performance condition.

sup
ω∈R

µ∆[Fl(P (jω),K(jω))] < 1 (7)

P

K

Figure 1: Feedback System with Uncertainty

Final Control Problem

Our final control problem is to find an admissible controller to satisfy both H∞ DIA control condition in (3)
and robust performance condition in (7).

System Description and Modeling

Consider the electromagnetic suspension system shown schematically in Figure 2. An electromagnet is located
at the top of the experimental system. The control problem is to levitate the iron ball stably utilizing the
electromagnetic force. The mass M of the iron ball is 286[g], and steady state gap X is 3[mm]. Note that
this simple electromagnetic suspension system is unstable without feedback control. A standard optical gap
sensor is placed both sides of the ball to detect the distance between the iron ball and the electromagnet.

Under some assumptions around the steady state operation (Fujita et.al., 1995), we can derive the following
three equations, which show an equation of the motion of the iron ball(8), electromagnetic force(9) and
equation of an electric circuit of the electromagnet(10) respectively.

M
d2x(t)

dt2
= Mg − f + vm(t) (8)

f(t) = k

(
I + i(t)

X + x(t) + x0

)2

(9)

L
di(t)
dt

+ R(I + i(t)) = E + e(t) + vL(t) (10)

where M is the mass of the iron ball, X is the steady gap between the electromagnet(EM) and the iron ball,
x(t) is the deviation from X, I is the steady current, i(t)is the deviation form I, E is the steady voltage,
e(t) is the deviation from E, f(t) is the electromagnetic force, k and x0 are coefficients of f(t) which are
determined b experiments, L is an inductance of the EM, R is a resistance of the EM, and vm(t), vL(t) are
exogenous disturbance and uncertainties. The nominal model parameters of the plant are given in Table 1.
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Figure 2: Magnetic Suspension System

In the case we apply the linear control theory with respect to this system and the problem is that the
equation of the electromagnetic force(9) is nonlinear concerning x(t) and i(t). Here we utilize the standard
linearization approach based on the Taylor series expansion around the operating point.

f(t) = k

(
I

X + x0

)2

− Kxx(t) + Kii(t) (11)

where Kx = 2kI2/(X + x0)3,Ki = 2kI/(X + x0)2.

Symbol Parameter Name Value Unit

M Mass of the ball 0.286 kg

X Steady Gap 3.000×10−3 m

I Steady Current 0.843 A

E Steady Voltage 8.47 V

k coefficient of f 2.14×10−4 Nm2/A2

x0 coefficient of f 4.36×10−3 m

R Resistance 9.50 Ω

L Inductance 0.300 H

Table 1: Physical Model Parameters

The gap sensor provides the information for the gap x(t) a noise. Hence the measurement equation for yg(t)
can be written as

yg(t) = x(t) + w0(t) (12)

where w0(t) represents the sensor noise as well as the model uncertainties.

Moreover, the steady state equations are given by Mg = k
(

I
X+x0

)2

and RI = E, then summing up the
above results, the state equations for the system are

ẋg = Agxg + Bgug + Dgv0

yg = Cgxg + w0
(13)

where xg := [x ẋ i]T , ug := e, v0 := [vm vL]T ,

Ag =


 0 1 0

2670 0 −23.3
0 0 −31.6


 , Bg =

[
0 0 3.33

]T
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Cg =
[

1 0 0
]
, Dg =


 0 0

3.50 0
0 3.33




Here (Ag, Bg) and (Ag, Dg) are controllable, and (Ag, Cg) is observable.

Control System Design

In this section, we apply the H∞/µ DIA control to the magnetic suspension system and design a control
system.

Construction of the generalized plant

First let us consider the system disturbance v0. Since v0 mainly acts on the plant in a low frequency range
in practice, it is helpful to introduce a frequency weighting factor. Hence let v0 be of the form

v0 = Wv (s)w2 (14)

Wv = ΦCw (sI − Aw)−1
Bw, Φ = [1 1]T (15)

where Wv(s) is a frequency weighting whose gain is relatively large in a low frequency range, and w2 is a (1,2)
element of w. Consider the system disturbance w0 for the output. The disturbance w0 shows an uncertain
influence caused via unmodeled dynamics, and define

w0 = Www1 (16)

where Ww is a weighting scalar, and w1 is a (1,1) element of w. Note that Ww is sometimes frequency
dependent, but it is selected as scalar for the sake of simplicity.

Next we consider the variables which we want to regulate. In this case, since our main concern is in the
stabilization of the iron ball, the gap x(t) and the corresponding velocity ẋ(t) are chose; i.e.,

zg = Fgxg, Fg =
[

1 0 0
0 1 0

]
(17)

Then, as the error vector, let us define as follows

z2 = ρug, Θ = diag
[

θ1 θ2

]
(18)

where Θ is a weighting matrix on the regulated variables zg, and z2 is a (1,2) element of z. This value Θ, as
yet unspecified, are also free design parameters.

Furthermore the control input u should be also regulated, and we define

z1 = Θzg (19)

where ρ is a weighting scalar, and z2 is a (1,2) element of z. Finally, let x :=
[
xT

g xT
w

]T , where xv denotes

the state of the frequency weighting Wv(s), and w :=
[
wT

1 wT
2

]T , z :=
[
zT
1 zT

2

]T , then we can construct
the generalized plant as in the following;

ẋ = Ax + B1w + B2u
z = C1x + D12u
y = C2x + D21w (20)

A =
[

Ag DgCw

0 Aw

]
, B1 =

[
0 DgDw

0 Bw

]
,

B2 =
[

Bg

0

]
, C1 =

[
0 0

ΘFg 0

]
, D12 =

[
ρ
0

]
,

C2 =
[

Cg 0
]
, D21 =

[
Ww 0

]
The block diagram of the obtained generalized plant is shown in Figure 3.
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Problem Setup for Control System Design

Next, for the robust performance synthesis, we define the definite block structure ∆ in this system as follows.

∆ :=
{[

∆w 0
0 ∆v

]
: ∆w ∈ C, ∆1×2

v ∈ C,∀ω

}
(21)

where δw is an additive perturbation including parametric uncertainty, linearization error and unmodeled
dynamics; and δv is defined as ∆v = [∆v1 ∆v2] and is fictitious uncertainty for control performance. The
final interconnection structure with an unspecified controller K by LFT representation in Figure 4.

Control Problem Setup: Find an admissible controller K(s) that achieves both of the DIA condition
in (3) and the structured singular value µ condition (7) for the interconnection structure. We call such an
admissible controller K(s) µ-DIA controller.

(sI-Ag)-1

Ww

Wv
Dg

Bg Cg

Fg

K

W1

W2

Z1

Z2

Zg

Xg

W0

V0

W

Z

Figure 3: Generalized Plant without Block Structure
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Ww

Wv
Dg

Bg Cg

Fg

K

Zg

Xg

W0

V0
w

z

u y

-

P

Figure 4: Generalized Plant with Uncertainty

Design Procedure of the µ-DIA Controller

We design the µ-DIA controller based on the following Nine-step procedure. Iterative calculations concerning
to design parameters and D-scaling matrix are done to obtain appropriate numerical sets on MATLAB, then
we obtain a numerical µ-DIA controller K(s) directly.
[Step 1] Select a weighting function Wv(s):

Wv(s) is a frequency weighting function which its gain is relatively large in a low frequency range.
This parameter is mutually related to a low gain of the controller K and the controller performance.

[Step 2] Select a weighting function Ww(s):
Ww is a frequency weighting function and this is related to robustness. Bigger choice of Ww could
mean allowing bigger uncertainties. Here we selected Ww as a scalar for simplicity, but it can be
chosen as a frequency function.

[Step 3] Select a weighting matrix Θ:
Θ is a weighting matrix on the regulated variables zg which means that θ1 and θ2 regulate x(t) and
ẋ(t) in xg(t) respectively.

[Step 4] Select a weighting scalarρ:
ρ is a weighting scalar on the input variable u and ρ regulates input u(t).

[Step 5] Construct the generalized plant and an H∞ DIA controller:
With a specified set of design parameters from [Step 1] to [Step 4], a generalized plant is constructed.
The DIA controller is designed for this plant, and its state-space description is given by easy algebraic
calculation.

[Step 6] µ-Analysis:
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Calculate µ for Fl(Pi,Ki) and the block structure ∆. Next we can get the scaling matrix D̄i+1(jω)
to minimize the following function on every frequency ω

σ̄[D̂i+1(jω)Fl(Pi,Ki)(jω)D̂−1
i+1(jω)] (22)

Then, evaluate the condition;

sup
ω∈R

σ̄[D̂i+1(jω)Fl(Pi,Ki)(jω)D̂−1
i+1(jω)] < 1 (23)

If the condition(23) is achieved, then this procedure is completed and stopped. Otherwise go to the
next step.

[Step 7] Calculate the maximum matrix N :
Calculating the maximum N satisfies the condition(3). For the sake of simplicity, the structure of
the matrix N is limited as

N = nI (24)

where n is a positive scalar number and I is a unit matrix of appropriate dimensions. This limitation
on the positive definite matrix N is for easy evaluation after the DIA Analysis.

[Step 8] Fix the scaling matrix D(s):
The scaling matrix D̄i+1(jω)Di(jω) pointwise across frequency is transformed to the real rational
matrix function Di+1(s). This step can be done by graphical matching using lower-order transfer
functions.

[Step 9] Reconstruct the generalized plant:
Construct a new state-space model for the new generalized plant

Pi+1 =
[

Di+1 0
0 1

]
P

[
D−1

i+1 0
0 1

]
(25)

and return to [Step 5] and repeat the procedure until the controller K to achieve the condition．

Design of µ-DIA controller

After some iteration in MATLAB environment, these parameters are chosen by the above 9-step design
procedure as follows;

Wv(s) =
5.0 × 104

s + 0.010
, Ww = 0.3

Θ =
[
θ1 0
0 θ2

]
=

[
1.0 0
0 0.00010

]

ρ = 4.0 × 10−7 (26)

We obtained a following controller K(s) after the 2nd D-K iteration, where the peak value of µ∆[Fl(P, K)]
is 0.743 and a constant scaling matrix D is employed.

K(s) =
8.496 × 108(s + (48.68 + 20.39i))

(s + (330.59 + 655.7i))
(27)

× (s + (48.68 − 20.39i))(s + 7.1955)
(s + (330.59 − 655.7i))(s + 811.19)(s + 0.01)

The maximum value of the weighting matrix N in (3) is given by

N = 4.561157 × 10−3 × I4 (28)

Calculated upper and lower bounds of µ∆[Fl(P, K)] and σ̄[DFl(Pi,Ki)(jω)D−1] with the controller K(s) in
(28) are shown in Figure 5, where two solid lines show upper and lower bounds of µ and the dashed line
shows the maximum singular value respectively. Since the peak value if the upper bound of µ is less than
1 in Figure 5, the closed-loop system with uncertainties achieves the robust performance condition (7) and
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also achieve the “Control Problem Setup” condition for N = 4.561157 × 10−3 × I4.

The frequency responses of the controller µ-DIA controller and the conventional H∞ DIA controller shown
in Figure 6 by a solid line and a dashed line respectively. Figure 6 shows that both controllers have high gain
at the low frequency and good roll-off property at high frequency range. These two controllers are obtained
by using the same set of design parameters (26).
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Figure 5: σ̄ and µ plots of the second iteration
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Figure 6: Frequency Responses

Evaluation By Simulations and Experiments

In order to evaluate the proposed control design methodology, we implement the obtained both of µ-DIA
and H∞ DIA controllers via digital control system, and carried out control experiments. The iron ball as a
standstill has been suspended stably with both controllers.

Transient Response

For evaluation of transient response, a step reference signal is added to the system around 0.05[s], where the
magnitude of the step signal is 1.0[mm] and the steady state displacement form the electromagnet to the iron
ball is 3[mm]. Experimental results with µ-DIA and H∞ DIA are shown respectively in Figure 7.

Compared µ-DIA controller with H∞ DIA controller, we can see that overshoots are almost same with both
controllers, but two settling times are different and H∞ DIA controller shows a better transient performance.
On the other hand, the transient response of µ-DIA controller is getting worse in exchange for robust perfor-
mance.

Next, we obtain the simulation results of initial responses where initial current is 0.1[A] as an initial-state
uncertainty, and results are shown in Figure 8. From this figure, we can see that rise time and settling time
of H∞ DIA controller are shorter than µ-DIA controller’s. It is obvious that H∞ DIA controller shows better
performance than µ-DIA controller in Figure 7 and 8.

Robust Performance

Next our concerns are the robust performance comparison of these two controllers. µ-DIA controller is
expected to have better robust performance than H∞ DIA because of the control problem setup in this
study. To check robust performance, we changed the suspended iron ball.
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Mass of the Ball [g] Varying Rate
0 286(nominal val.) 0%
1 440 +54%
2 534 +87%

Table 2: Mass Change of the Iron Ball

Three iron balls including the original ball in Table 2 were used to make model perturbation of the plant.
For the robust performance comparison, step responses of both controllers using these three iron balls are
measured and the obtained experimental results are shown in Figure 9 and 10.

Then we find that the overshoot of the H∞ DIA controller is getting bigger than µ-DIA controller according
to an increase in mass of the iron ball. However, the influence of mass change is kept down relatively in
µ-DIA case. The overshoot changes with both controllers is indicated in Table 3.

Varying Rate[%]
440[g] 534[g]

H∞ DIA 4.48 5.97
µ-DIA 1.49 2.99

Table 3: Overshoot Comparison in Two Controllers

Each numerical value shows a rate[%] of change of the overshoot based on the nominal response. The µ-DIA
is robust to changes in the mass M of the iron ball as recorded in Table 3. Thus µ-DIA would be considered
to achieve robust performance.

From the above 2-types of control experiments,µ-DIA controller would not have a bad transient response
property and have a better robust performance compared with the conventional H∞ DIA controller. It can
be considered that µ-DIA controller have both a good transient performance of H∞ DIA control and a good
robust performance of µ-synthesis.
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Conclusion

In this paper, we applied a D-K iteration technique for improving robust performance to H∞ DIA control
and employed a µ-analysis to check the robust performance condition. Here, H∞/µ DIA Control is to find a
multi-objective controller to achieve both the H∞ DIA condition for good initial responses/transient responses
and the structured singular value µ condition for robust performance. This proposed approach was applied
to the magnetic suspension system and its transient response, initial response and robust performance was
evaluated via several control experiments.
Finally, compared with the H∞ DIA controller, usefulness and effectiveness of the proposed H∞/µ DIA
control design framework considering initial-state uncertainty were shown for transient responses and for
improving robust performance.
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