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Improving the Transient Response of Magnetic Bearings
by the H,, DIA Control
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Abstract— This paper deals with an application of H
control attenuating initial-state uncertainties to the magnetic
bearing and examines theH ., control problem, which treats a
mixed Disturbance and an Initial state uncertainty Attenuation
(DIA) control. The mixed Ho, DIA problem supplies H
controls with good transients and assuresH.. controls of
robustness against initial-state uncertainty. On the other hand,
active magnetic bearings allow contract-free suspension of
rotors and they are used for various industrial purposes.
We derive a mathematical model of the magnetic bearing
which has complicated rotor dynamics and nonlinear magnetic
property. Then we apply this proposedH., DIA control for
the magnetic bearing, and design a robust ., controller both
for exogenous disturbances and for initial state uncertainties of
the plant. Experimental results show that the proposed robust
control approach is effective for improving transient response
and robust performance.

I. INTRODUCTION

magnetic bearings include the expense of the equipment,
the necessity of countermeasures in case of a power failure,
and instability in their control systems. However, there are
many real-world applications which utilize the advantages
outlined above. Examples of these applications are : turbo-
molecular pumps, high-speed spindles for machine tools,
flywheels for energy storage[4], reaction wheels for artificial
satellites, gas turbine engines, blood pumps[6], and fluid
pumps, etc. [5], [7].

In this paper, we apply thé{,, control attenuating
initial-state uncertainties to the magnetic bearing. First we
derive a mathematical model of magnetic bearing systems
considering rotor dynamics and nonlinearities of magnetic
force. Then we set the generalized plant which contains
design parameter for uncertainty and control performance.
Experimental results show that the proposed robust control
approach is effective for a mixed disturbance and an initial-

Hoo control problem has been proven an effective robugae yncertainty attenuation and for improving transient
control design methodology and it has been applied to fdsponse and robust performance.

variety of industrial products. On the other hand, recent
precision control industries and manufacturing technologies Il. He DIA CONTROL

requires not only robust stability of the control systems but Consider the linear time-invariant system which is de-
also transient performance for reference signals. One of thi@ed on the time interval [0x).

major approach for this problem is a two-degree of freedom

robust control, but this approach generally has a coupling z B Az + Biw + Bau, z(0) =10
problem of feedforward and feedback control design. An = Ciz+ Dipu
y = Cwr+ Dyw (1)

H,/H., control approach[1] seems to be effective, but it
is not easy to design such controller for MIMO complex wherez € R™ is the state and:, = z(0) is the initial
systems. state;u € R" is the control inputy € R™ is the observed

A mixed Disturbance and an Initial-state uncertaintyoutput; = € R? is the controlled outputyy € RP is the
Attenuation (DIA) control is expected to provide a gooddisturbance. The disturbanee(t) is a square integrable
transient characteristic as compared with conventital function defined on0, 00). A, By, Ba, C1, Co, D12 and
control[2], [3]. Recently, hybrid/switching control are ac-D,; are constant matrices of appropriate dimensions and
tively studied, this method might be one of the most reasoratisfies that
able approach to implement them. In this paper, we apply
the proposedH., DIA control to the magnetic bearing, : ;
and designed a robu$t.. controller both for exogenous * (ATvB2) is controllable and A, ) is observable
disturbances and for initial state uncertainties of the plant. ® D12D1T2 € R/TXT’ 1S nonsm.gular

Active magnetic bearings are used to support and maneu-* P21D21 € R™™ is nonsingular

ver a levitated object, often rotating, via magnetic force[4]gor system (1), every admissible contno(t) is given by
[5]. Because magnetic bearings support rotors without phygnear time-invariant system of the form
ical contacts, they have many advantages, e.g. frictionless

J(+ Ky

operation, less frictional wear, low vibration, quietness, w
high rotational speed, usefulness in special environments, ¢ GC+Hy, ((0)=0 ()

and low maintenance. On the other hand, disadvantagesgich makes the closed-loop system given internally stable,
_ _ _ where((t) is the state of the controller of a finite dimension;
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described above, consider a mixed-attenuation problem statelll. SYSTEM DESCRIPTION AND MODELING

as below.

Problem 1:  H., DIA control problem

Find an admissible control attenuating disturbances an

initial state uncertainties in the way that, for givéh> 0,
z satisfies

1213 < llwl3 + 25 N~ a0

®3)

for all w € L?[0,00) and allzy € R™, s.t., (w, zg) # 0.
Such an admissible control is called tBesturbance and
Initial state uncertaintyAttenuation (DIA) control.

In order to solve the DIA control problem, we require

the so-called Riccati equation conditions:
(A1) There exists a solution/ > 0 to the Riccati equation

M(A — By(DL,Dy5) ' DL, CY)

+(A — By(D{,D10) ' DLC)T M
—M(By(DL, Do) *BY — BiBTYM

+0TC, — CE Do (DL, D) 'DL,Cr =0 (4)

s.t. A — By(DT,D12) 1 DL,Cy — Bo(DL, Do) ' BT M +
B1BT M is stable.
(A2) There exists a solutio? > 0 to the Riccati equation

(A= B1D3, (D21 D3,) ' Co) P

+P(A— BiD3, (D1 D3,) "' Co)”

—P(Cy (Da1Dy;) "' Cy — C{ C1)P

+B,B] — BiD3,(D21D3,) ' Do1 B =0 (5)

st A— Bngl(Dlegl)_lcg — PC’;(DngQTl)_ng +
PCTCy is stable.

(A3) p(PM) <1

where p (X) denotes the spectral radius of matriX,
p(X) = max |A; (X) .

Then we can obtain the following result.
Theorem 1. [2]

The experimental setup of the magnetic suspension
system][8] is shown in Fig.1 and rotor coordinate is defined
Fig.2. The controlled plant is a 4-axis controlled type
active magnetic bearing with symmetrical structure. The
axial motion is not controlled actively. The electromagnets
are located in the horizontal and the vertical direction of
both sides of the rotor. Moreover, hall-device-type gap
sensors are located in the both sides of the vertical and
horizontal direction.

rotor

T magnetic bearing
. gap gensor |

Fig. 1. Magnetic Bearing

Suppose that the conditions (A1), (A2) and (A3) are satis-

fied, then the central control is given by

u = —(D{yD12)""(B] M + D{,C1)(I — PM)™'¢
( = AC+ Byu+ PC[(Ci¢+ Dyau)
+(PCJ + B1D3,)(Da1D3)) "y — C2()
¢(0) =0 (6)

The central control (6) is a DIA control if and only if the
condition (A4) is satisfied.
(A4 Q+Nt-pPl>o,

where@ is the maximal solution of the Riccati equation

Q(A — B1DJ (D1 D3,) "' Cy
+ (B1BT — By DY (D3, DL) "' Doy BT Y P71
+(A = B1D3, (D1 D3,) 7' Cy
+ (B1B] — B1D3,(Dy1D3,) "' Dy B ) P~1)TQ
—Q(Bf — D3,(Dy1D3,)~ (CoP + Dy BY ) L)
x (Bl — D3, (D1 D3,) " (CoP + Dy BY ) L)Q
0 (7

with L := (I — PM)™".

Fig. 2.

Rotor

The equation of the motion of the rotor iH and Z
directions in Fig.2 has been derived as follows[5].

mis = —fi3 = Vmiz — [r3 — Umsr3 (8)

mzs = mg— fit — Vmin — fr1 — Vmr1 9)
W0 = —Jupt +Im(fir + Ve — fr1 — V1) (10)

b = —Jupb+Im(—fiz — vpus + frz + Vimrs)

11)

wherey,(t) andz,(t) are displacements &f direction and
Z direction respectivelyf(t) and v (t) are angles about
Y direction andZ direction respectively;n is mass of
the rotor; g is gravity; I,,, is distance between center and
electromagnet;/, andJ, are Moments of Inertia about
axis andY” axis respectivelyp is rotation rate of the rotor;
f;js are electromagnetic force; ang,;s are exogenous
disturbance. Here the subscript 'ghows the each four
directions:{1, r1, I3, r3} in Fig.1.

1131



TABLE |

MODEL PARAMETER Ty = [gn g1 911 G inn ipa]”
Parameter Symbol Value Th = |93 9r3 Qi3 Gr3 G13 i,«g}T
Mass of the Rotor m 0.248[kg] ) . T T
Length of the Rotor Lr 0.269[m] wy = len en]’, un=les e
Distance between I 0.1105[m] Vo = [Umil Vel Vo1 VLe1)?
Center and Electromagnet . T
Moment of Inertia aboufX Jz 5.05-107° U = [Vmiz Umrs VL1 VLrs]
_ kgm?] yo = [y yal"s yn=lus yesl”
Moment of Inertia about” Jy 1?39#)] we = [wn w)T, wh = [wiz wys]”
Steady Gap G 0.4 x 1073[m] 0 I 0
Coefficients off; (t) k 2.8 x 1077 Ay = KA 0 Koy
steady Current(vertical) I, I 0.1425[A] 0 0 —(R/L)I
steady Current(horizontal) | Ij3, I3 0[A] - 0 I 0
Resistance R 4[Q] 2
Inductance L 8.8 x 1074[H] Ap = Ka3Ar 0 KizAy
Steady Voltage(vertical) En, En 0.57[V] | 0 0 —(R/L)I
Steady \oltage(horizontal) | Eis, E;3 0[V] 0 0 0
Ay = 0 As O
L0 0 0
The position variablesy; and z, and the rotational [ 0
variablesd andi) can be transformed by using gap lengths: B, = By:= 0
{911, 9r1, 13, 9r3} Which are small deviations from the | (1/L) I3
equilibrium point as follows. C, = Chpi=[L 0 0]
ys = —(q3+9r3)/2 (12) D D j 8
= (g tgr)/2 (13) v o1 (1/L)I
0 = —9r1)/2lm 14 -
¢ = (=gi3+9r3)/2lm (15) L 1 /m — m/J 1/m +l /J
Next, attractive force of electromagnets is given as followed. Ay = { Jo/2dy  —Ju/2J,
’ —J/2d,  Jz/2J,
_ (5, +05)? (i —05)? 16 o2y Te[2y
i = (95— 0.0004)2 " (g; +0.0004)2 (16)  wherer, € R2*? is unit matrix, andK,; = Ky = Ko,

KIS = Kle = Kzr31 Kil = Kill = Kz’rly KiB = KilS =

K3 in (16), andp is the rotor speed. Hergis equal to0

dij(t) ' and we do not consider a rotation of the rotor in this paper.
T RU () = By +e(t) +or(t) (A7) The equation (19) can is also expressed simply as

The electric circuit equations are given as followed.

wherei;(t) is a deviation form steady current;(¢) is a g = Agxg+ Byug+ Dyvg
deviation form steady voltagey,; is noise. Yy, = Cyxy+ wp (20)
The sensors provide the information for the gap lengths T
g;(t). Hence the measurement equations can be written #1erexz, == (8 21", uy .= [uy uf]", vo:= [v] o],
wo = [wl wf]" and Ag, B,, C,, D, are constant
yit) = g;(t) +wj (18)  matrices of appropriate dimensions.
wherew; (t) represents the sensor noise as well as the model IV. CONTROL SYSTEM DESIGN

uncertainties. Thus, summing up the above results (8)-(18),

- Let us construct a generalized plant for the magnetic bear-
the state-space equations for the system are 9 P g

ing control system. First, consider the system disturbance
vp. Sincewvy mainly acts on the plant in a low frequency

Ty _ Ay pApn Ty range in practice, it is helpful to introduce a frequency
Tp B —pAvn  Ap xp weighting factor. Hence let, be of the form
B, v
Lo sl
h Uh vo = Wy(s)ws (21)
DU v
el "
Wy(s) = 2 Wao(s)
Yo _ C, 0 To | | W (19) 0 I,
Yh N 0 Cp Th W, 0 I,



WUO(S) - C’UO (314 - AUO)_l BUO Wl W WO

Ml
where W, (s) is a frequency weighting whose gain |sw{ ‘ Ly 4
|
relatively large in a low frequency range, and is a(1,2) 4m Fy ”-“—’ 3 z
element ofw . These values, as yet unspecified, can be i)

| p
|
regarded as free design parameters. . (sTA, ) Cc s -
Let us consider the system disturbanggfor the output. u x, = Y

The disturbancevg shows an uncertain influence caused via | T
unmodeled dynamics, and define

K _
wog = Wy(s)w (22) L2 ]
Wy(s) = LaWiyo(s) Fig. 3. Generalized Plant
VVwO(S) = CwO (514 - AwO)_l Buyo

where A, B;, By, C1, Co, Dis and Dy are constant
matrices of appropriate dimensions. Since the disturbances
w represent the various model uncertainties, the effects of
these disturbances on the error vect@whould be reduced.
Next our control problem setup is defined as;

&y = Ayxy+ Byws Control problemF find an admissible controlleK (s) that

vo = Cyty—+ Dywsy (23) atte_nuates disturl_)qncgs and initial state uncertainties to
achieve DIA condition in (3) for generalized plant (28).

whereW,,(s) is a frequency weighting function and, is
a(1,1) element ofw. Note thatl, is unit matrix in R**4,

The frequency function$?, and W,, in (21) and (22)
are rewritten as equations in (23) and (24).

Tw = AwTue+ Buw: After some iteration in MATLAB environment, design
wyg = CyXy + Dywr (24)  parameters are chosen as follows;
where the statez, and z,, are defined asz, := Wiols) = 40000
[%T1 aly xly J731;T4] » Ty 1= [xgl xlo xls 3554] v N 0 1 49 . u
Next we consider the variables which we want to regulat (5) = 1 18 +1.4-10%*+7.3-10°s+3.5-10
In this case, since our main concern is in the stabilization o wo 0.2s3 + 1 1- 104 245.1-106s+2.7-1011
the rotor, the gap and the corresponding velocity are chosen; © = diag [ Ov2 On1 On2
i.e., 0,1 = diag [ 04 04]
zg = Fgl'gy (25) Ghl = dz’ag[ 0.5 05]
Ib, 00 0 0 0 Opo = Onpo = diag [ 0.0005 0.0005]
o 0 I, 0 0 0 0 p = 80-1077I4
9 = 0 0 0 Ib 0 O . P—
0 0 0 0 I, 0 Frequency responses f,,o(s) is shown in Fig.4W,,o(s)
represents an uncertainty for the 1st bending mode of the
5 = Oz, O=diag[ 6 0o 0 0] (26) oF y 9

rotor at the resonance frequeng§0[Hz].
where © is a weighting matrix on the regulated variables

zg, and z; is a (1,1) element ofz. This value®, as yet , WY s)
unspecified, are also free design parameters. 10 ‘ ‘ ‘
Furthermore the control input, should be also regu-
lated, and we define
2o = pug 27) ol |
where p is a weighting scalar, anes, is a (Tl 2) element "
of z. Finally, let z := [ 2] «l =zl |, wherez, 2
denotes the state of the functidi,(s), =, denotes the &
state of the function,(s), andw := [ w{ w] ]T, s 10° L
zi=[ 2 2] ]T, then we can construct the generalized
plant as in Fig.3 with an unspecified controll&t.
The state-space formulation of the generalized plant i
given as follows. -1 ‘ ‘ ‘ ‘ ‘
1010'6 10 107 10° 10° 10° 10°
& = Az+ Biw+ Bou FREQUENCY [ Hz]
z = Ciz+ Dysu
y = Coz+ Dyjw (28) Fig. 4. Frequency Response Wf,o(s)
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Direct calculations yield the 24-ordéf,, DIA central

where the magnitude of the disturbancel j$ steady-state

controller Kpy4 and its frequency response is shown invertical attractive force.

Fig.5.
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Fig. 5. Frequency Responsesf.,DIA Controllers

The maximum value of the weighting matriX in the
DIA condition (3) is given by

N =3.3176-107° - I,,. (29)
V. EVALUATION BY EXPERIMENTS

DIA controller shows good disturbance responses and
also good robust performance for step-type disturbance and
model perturbation.

C. Initial Responses

In Figs.8 and 11, initial responses of two controllers
are shown respectively. The initial state is chosen that the
rotor is touched down. Four gap lengths are shown in these
figures and theH., DIA controller shows better initial
performance.

Finally, compared with LQ control with notch filter, we
can see thak{, DIA control has a good robust performance
and transient response except for nominal step response
from Figs.6-11.

VI. CONCLUSION

This paper dealt with an application ¢f,, control
attenuating initial-state uncertainties to the magnetic bearing
and examined th&{., DIA control problem.

First we derived a mathematical model of magnetic
bearing systems considering rotor dynamics and nonlinear-
ities of magnetic force. Then we set the generalized plant
which contains design parameter for uncertainty and control
performance.

Finally, several experimental results of step responses and
disturbance responses with model perturbation and initial
responses showed that the proposéd DIA robust control

We conducted control experiments to evaluate propertiegpproach is effective for a mixed disturbance and an initial-
of the designedH., DIA controller compared with an state uncertainty attenuation and for improving transient
integral-type Optimal State Feedback Control with a stateesponse and robust performance.
observer and a notch filter. We define this controller as “LQ Future work is an evaluation of the proposgd, DIA

Controller”.
The notch filter has a notch a000[Hz] and its transfer
function is as follows.
52 +1.5791 x 108
s2 + 125665 + 1.5791 x 108

(30)

control via rotational experiments.
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