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Abstract— This paper deals with the H., DIA control on the other hand, extended this result and obtained an
system design attenuating initial-state uncertainties and its ‘Ho control with a free-parameter which considers a mixed
application to magnetic suspension systems. Here théls  4itenuation of disturbance and initial-state uncertainty for

DIA control means a mixed Disturbance and an Initial- i fi . iant t in the infinite-hori 4
state uncertainty Attenuation(DIA) control for linear time- inear time-invariant systems in the infinite-horizon case[4].

invariant systems in the infinite-horizon case. TheH. DIA . . L
control problem supplies Ho, controls with good transients However, the problem discussed in [4] was limited to

and assuresH.. controls of robustness against initial-state time-invariant systems satisfying the orthogonality assump-
uncertainties. We derived a necessary and sufficient condition tions [5]. This is an immensely serious problem if we
of the generalizedH-. DIA problem. apply this problem setup to the real physical control system
In this paper, we apply this 7. DIA approach to magnetic  design. The previous mixed attenuation of disturbance and
;Lr’gg:r';;'ogf tshft%r:fp; osigd ag;)’?cl):ithe Vié; g;gﬂmggg_‘uwgn initial-state uncertainty in the infinite-horizon case is not
investigate a role of the weighting matrix N for the initial  Sufficient in practice[6] because time-invariant systems sat-
state uncertainty in the control system design. isfying the orthogonality assumptions restrict the degrees
of freedom of the control system design, and the previ-

ous problem setup has a difficulty in regulating control

I. INTRODUCTION inputs(6], [7].

The authors here formulated an infinite horizon distur-

Attenuations are expected to suppl., control prob- bance_ and initial state uncc_ertainty atte_nuation control prob-
lem with some good transient properties. The linear timd€™M Without the orthogonality assumptions[8]. The solution
invariant H.. control attenuates the effect of disturbancesS 91ven as a natural extension of the previous results in [4],
on controlled outputs and is originally defined under thé®l- A necessary and sufficient condition for a solution to
assumption that the initial states of the system are zerBXiSt: together with an explicit formula of the solution, was

Initial states are often uncertain where as it might be zefderived in [8]. Based on the given condition, a robustness
or non-zero. If the initial states are non-zero, the systefOPerty ofH, controls against initial-state uncertainty was

adopting an.. control will present some transients asdiScussed.

the effect of the non-zero initial states, to which the, In this paper, we apply this approach[8] to the real mag-
control is not intrinsically responsible. S_uch transients mightetic suspension systems and evaluate the effectiveness of
be unacceptable to themselves, or might cause the perf@fe proposed method via experiments. Magnetic suspension
mance level of disturbance attenuation of tHeg, control  gystems can suspend a magnetic body by magnetic force
to deteriorate intolerably. These circumstances motivatggithout any contact[9], which requires feedback control
us in this paper to be concerned witli., controls that in order to be workable. Recently, magnetic suspension
accomplish a mixed attenuation of disturbance and initiag;ys»[emS including active magnetic bearings and magnetic
state uncertainty in controlled outputs. Re(_;ently, sw?tchi_ngomrm seem to be one of the hot topics in control applica-
control for hybr_ld complex_ systems is _actlvely studied injgn field[9], [10], [11], [12]. Nonlinear control approaches
control theory field and this method might be one of thege recently focused in this field[10], [11], [12], but our

most reasonable and practical approach to implement it. approach taken here is a reliable linear robust control
In the finite-horizon case, a generalized type %8t methodology.

control problem was formulated and solved by Uchida

and Fuijita[1] and Khargonekar et al.[2]. The problem was Comparing in the several proposéd,, DIA controllers,

extended to the infinite-horizon case, and a result wa¥e show the property and effectiveness of the proposed

derived by Kojima et al.[3] and Khargonekar et al.[2]. HeregeneralizedH., DIA control attenuating initial state un-

the same result was derived by the different approaches_ Tﬁ@rtainties. Experimental results indicate that one of the

problem discussed by Kojima et al.[3] and Khargonekar edesign parameter(y and the frequency responses of the

al.[2] is limited to the central control case. Uchida et al.[4]{- DIA controllers and the weighiV for the initial state
uncertaintiesro(zo = z(0) # 0) in the H,, DIA problem
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Il. PROBLEM STATEMENT (A1) There exists a solution/ > 0 to the Riccati equation

Consider the linear time-invariant system which is de- M (A — By(DI,D1o) ' DE,CH)
fined on the time interval0, co) and described by +(A — Bo(DL, Do) DL C)T M

—M (B (DL, Dy5) B — BB )M
+0TCy — O D12(DIyD12) DI, 0L =0 (4)

& = Ax+ Byw+ Bou, xz(0) =1
z = Ciz+ Dysu s.it.A— BQ(D{2D12)71D¥1201 — BQ(D{QDlg)ilBg]\/[ +
Yy = Cgl' + Dojw (l) BlB?J\J is stable.
wherez € R" is the state ands is the initial state: (A2) There exists a solutiof? > 0 to the Riccati equation
u € R" is the control input;y € R™ is the observed (A — B,DL (Dyy DE)1Cy) P
output; z € RY is the controlled output and € R? is +P(A — Bi DL (Do DL)1Co)T
the disturpance. Note. that this system does not have the —P(CT(Dyy DIty — CTCy)P
orthogonality assumptions[5]. +B,BT — B\DY,(D»,D}) " 'DyBT =0 (5)

Without loss of generality, we regare, as the initial- . . r .
state uncertainty, and, = 0 as a known initial-state case. S.t. }4 - _BlD21(D21D21) Cy — PCy (D21 D3y) 1 Co +
The disturbance(t) is a square integrable function defined?’Ci C1 is stable.

on [0, ). (A3) p(PM) <1,
A, By, By, C1, Ca, D12 and D,y are constant matrices where p (X) denotes the spectral radius of matiix and
of appropriate dimensions and satisfies that p(X) =max |\ (X)].
« (A, By) is stabilizable and A, C1) is detectable. Then we obtained the following results.
* (4, By) is controllable and A, C3) is observable. Theorem 1: [8] Suppose that the conditiorf&\1), (A2),
« D{,Di5 € R™*" is nonsingular. and(A3) are satisfied. The following controller (6) is a DIA
« D2 D3, € R™™ is nonsingular. control if and only if the conditior(A4) is satisfied.
For system (1), every admissible output feedback control .
is given by a linear time-invariant system to the form tr = Axwx+ By
u = Cgzxg+ Dgy (6)
¢ = Ax(+Bgy, ¢(0)=0 wherexx is the state of the DIA controller and
v = Ckg(+ Dky (2
_ _ Ax = A+PC{C, — (PC] + B1D3,)(Ds1D3,) ' Co
which makes the closed-loop system, given by (1) and —(By + PCTDy,) (DY, Do)t
(2) internally stable, wheré(t) is the state of a controller x(BIM + D1,Ch)L
of a finite dimension, andix, Bk, Ck, Dk as constant p,. — (PCI + B, D)) (Do DI
matrices of appropriate dimensions. Cx = —(DL,Dy)"Y(BIM + DLCy)L.
For the system and the class of admissible controls dgy,. = ¢
scribed above, consider a mixed-attenuation problem stated .
as below. with L := (I — PM) " ".
Problem 1: H., DIA Control Problem (Ad) Q+N-'— P10,

Find an admissible control attenuating disturbances ang,
initial state uncertainties in the way that, for givéh> 0,
» satisfies Q(A — B1D3,(D31D3,) "' Cy
+(B1B{ — B1D3, (D1 D3,) ™ Doy B )P™)
213 < lwl3 + 2 N~ a0 (©) +(A - B D}, (D21 D3,) 1O
+ (Bi1B] — BiD3, (D21 D3,) "' Doy B )P~ H)TQ
~Q(B{ — D3 (D21D3;) " (CoP + Doy BY )L)"

ereQ is the maximal solution of the Riccati equation

for all w € L?[0,00) and allzg € R", s.t., (w, zo) # 0.
Such an admissible control is called thésturbance and T s AR T
Initial state uncertaintyAttenuation (. DIA) control. _ 0>< (By = Dy1(Da1 D)™ (CoP + D By )L)Q(7)
The weighting matrixV.on z, is a measure of relative
importance of the initial-state uncertainty attenuation to the IV. SYSTEM DESCRIPTION ANDMODELING
disturbance attenuation. A larger choice’fin the sense of  The experimental setup of the magnetic suspension sys-
matrix inequality order means finding an admissible contram is shown in Fig.1. An electromagnet is located at the top
which attenuates the initial-state uncertainty more. of the experimental system. The control problem is to levi-
tate the iron ball stably utilizing the electromagnetic force,
Il. Hoo DIA CONTROL where the mas3/ of t)%e iron gi)all is238[g], ar?d steady
In order to solve theH., DIA control problem, we state gapX is 3[mm]. Note that this simple electromagnetic
require the Riccati equation conditions: suspension system requires feedback control in order to be
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workable. As a gap sensor, a standard optical displacement o = |1 1]T

sensor is placed on either side of the iron ball. . o o
where W, (s) is a frequency weighting whose gain is

o IHi(1) relatively large in a low frequency range, and is a (1, 2)
E+e(t) element ofw . These values, as yet unspecified, can be
regarded as free design parameters. Note that we have not
R made explicit distinction in the notation between a time
L domain function and its Laplace transform in (9). Let us
Electromagnet consider the system disturbanes for the output. The
disturbancew, shows an uncertain influence caused via
50 [ xo0 f 7 unmodeled dynamics, and define
Gap sensor
M wo = Wyw (10)

Iron ball . . . )
whereW,, is a weighting scalar, and, is a(1, 1) element
Mg g )
of w. Note thatlV,, is sometimes frequency dependent, but
Fig. 1. Magnetic Suspension System it is selected as a scalar for the sake of simplicity.
Next we consider the variables which we want to regulate.
In this case, since our main concern is in the stabilization

Under some assumptions around the steady Stalghe iron ball, the gap and the corresponding velocity are
operation[9], we derived the 3rd-order linear state-spacggsen: j.e.

formulation for the system as

&y, = Agxy+ Bgug+ Dyvg ®) zg = Fygxg, Fy= { (1) (1) 8 } (11)
Yy = Cyrg+wo
T T Then, as the error vector, let us define as follows
wherez, :=[z & i, ug:=e, vo:= Uy vL] ,
0 1 0 21 = 0Oz, O =diag [ 01 0 ] (12)
Ay = 26070 8 :gi’g where © is a weighting matrix on the regulated variables
L P zg, andz; is a(1,1) element ofz. This value© are also
Bg=[0 0 333, Cy=[10 0] free design parameters.
0 0 Furthermore the control input should be also regulated,
Dy =1350 0 and we define
0 333

Za=p U (13)
wherez(t) is a gap length between the electromagnet(EM)
and the iron ballj(t) is a current of the electromagnet;) Wherep is a weighting scalar, and, is a(1,2) element of
is a control input and a voltage applied to the electromagnét

andv,,(t) andvy(t) are exogenous disturbance inputs. Finally, letz := [35;{ :’Ei ]”, wherez,, denotes the s}ate
Here (A,,B,) and (A, D,) are controllable and of the frequency weightingV,, (s), andw := [w{ w] ],
(Ag,Cy) is observable. z = [ z;f}T, then we can construct the generalized

plant as in the following;
V. CONTROL SYSTEM DESIGN

For the magnetic suspension system, our principal control & = Ax+ Biw+ Bau
objective is its stabilization. Further it should be stabilized z = Cixz+ Diou
robustly against 1) unmodeled dynamics, 2) the neglected y = Cox+ Dyw (14)

nonlinearities, 3) the parametric uncertainties. To this end,
) P where A, B;, By, C1, Cy, D15 and Dy; are constant

we setup the control problem within the framework of the™ ™" ; : -
.. DIA control. matrices of appropriate dimensions.
The block diagram of the generalized plant with an
A. Construction of the generalized plant and problemsetup  unspecified controllerK is shown in Fig.2. Since the
First let us consider the system disturbange Since disturbancesw represent the various model uncertainties,
vo mainly acts on the plant in a low frequency range irfhe effects of these disturbances on the error vecsrould

practice, it is helpful to introduce a frequency We|ght|nd)e reduced. Note that this generalized plant does not have

factor. Hence lew, be of the form the orthogonality assumptions[5].
Next our control problem setup is: Finding an admissible
v = W, (s)w2 (9 controller K (s) that attenuates disturbances and initial state
Wy (s) = OW (s)=®C, (sI — Ay,) " B, uncertainties to achieve ti., DIA condition in (3).
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w, | Tw o | as follows;

w 5.0 x 10%
{ W (s) s+ 0.010
W, = 0.40
o — {91 0}:[1.10 0 }
0 6 0 0.00010
p = 10x107"7 (16)

Direct calculations yield theé{,, DIA controller Kpra;

K - which has a four-order;
Fig. 2. Generalized Plant KDIAl(S) = CK(S] - AK)_lBK a7
where
—126 1.00 0 0
: —5300 1.18-107* -23.3 6.99-10*
B. Design Procedure of the H., DIA Controller Ax = 100.107 809-10° —1040 584.10°
We designed thé{., DIA controllers for the generalized —224  5.62-1077 0 —0.01
plant derived in the previous subsection based on th@&, = 157 9880 4320 2.78 }T
following Six-Step procedure. Cx = 1.20-107 2.43-10* —574 1.73-10° |

Iterative calculations concerning to design parameters.The frequency response of the controllar (s) is

W,(s), W, ©, p are done to obtain appropriate numerical h . qF' é b P id line. Th S DIAL I ¢
sets on MATLAB, then we obtain a numerical,, DIA shown in 9. Yy a solid finé. The maximum value o
controller K (s) directly. the weighting matrixV is given by
[Step 1] Select a weighting functionW,:  W,(s) is N =5.256980 x 1073 x I,. (18)
a frequency weighting function whose gain is relatively
large in a low frequency range. This parameter is mutuall%/
related to a low gain of the controlléf and the controller "
performance.

Fig.3 shows thatKprx; has a high gain at the low
equency and good roll-off property at high frequency
range. The comprehensive frequency response looks like
[Step 2] Select a weighting function W,: W (s a modified PID controller. In the previods., DIA control

is a frequency weighting function and this is related tglesign framt_awork[4], [6], it was difficult to let controllers
robustness. Bigger choice d#,, could mean allowing get hold an integral property.

bigger uncertainties. Here we selectdd, as a scalar for p. |nvestigation for Weight NV

simplicity, but it can be chosen as a frequency function.
[Step 3] Select a weighting matrix®: © is a weighting
matrix on the regulated variableg which means tha#,
and#, regulatex(t) andi(t) in x4 (t) respectively.

[Step 4] Select a weighting scalap: p is a weighting

The weighting matrixV. on z, is a measure of relative
importance of the initial-state uncertainty attenuation to the
disturbance attenuation. A larger choiceldfin the sense of
matrix inequality order means finding an admissible control

. . : which attenuates the initial-state uncertainty more[4], [3],
scalar on the input variableandp regulates the inpui(t). we treat hereV as just an x I, wheren is a positive scalar

[Step 5] Construct a generalized plant and ant DIA  ,yher andr is a unit matrix of appropriate dimensions.
controller:  With a specified set of design parameters fromr,o mixed DIA suppliesi.., control with a good tran-
. . o0
[Step 1] to [Step 4,]’ a ggnerallzed p!ant is constructed. TrE‘?ent and assureX,, control of robustness against initial-
DIA controller (6) is designed for thls.plan.t. , state uncertainty. Transient responses are expected to be
[Step 6] Calculate the maximum matrix N: Calculating  jmnroved via regulating of initial state uncertainties[2], [4]D
the maximumy satisfies the conditiofA4). For the sake  pqr the evaluation of a feedback performance against the
of simplicity, the structure of the matri®/ is limited as weighting matrix N, we designed three othe.. DIA
] o0
_ controllers. Here we focus on a design parameétexhich
N =nl (15) .
makes a key role for a regulation of the plant stage ¢,

wheren is a positive scalar number ardis a unit matrix IS especially important if®, because it is an weight for a
of appropriate dimensions. This limitation on the positivedisplacement:(¢) of the iron ball, hence three controllers:

definite matrixV is for easy evaluation after ti., DIA  Kpra2, Kpras andKpras have been designed based on a
analysis. m Variation ofé;. Numerical values of the design parameters

W, (s), Wy, 62 andp except ford; are invariant throughout
the control system design and experiments. A set of design
C. Hoo DIA Controller results is shown in Table I.
After some iteration in MATLAB environment, these The frequency responses of the four controlléts; 41,
parameters are chosen by the above 6-step design procediitg; 42, Kpraz and Kpras are shown in Fig. 3 by a
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solid line, a dashed line, a dash-dot line and a dotted linarger n. This meansK p;4;1 is expected to have the best
respectively. From Fig.3 and Table I, it can be seen thattaansient performance among the four controllers.

larger 6, suppl|e§ a controller with a higher gain at hlghA_ Transient Response
frequency and gives a larger. ] ) .

Remark 1: A much larger choice of9, (6, > 1.1) For evaluation of the above expectation for transient
supplies a controller with a much higher gain at higH€SPonses, a step reference sigqal is added to the s_ystem
frequency and with a much larger. But a time response &round 1.0[s], where the magnitude of the step signal
of the resulting controller shows a vibration in experimentdS 1-0[mm] and the steady state displacement from the
9, = 1.1 is almost upper limit for a stable suspension.  €léctromagnet to the iron ball &B0[mm].

Remark 2: A much smaller choice of); (f; < 0.3) Experimental results witt(pra1, Kpras, Kpras and
provides a controller with a lower gain not only at high/fpras are shown respectively in Fig.4. All four setting
frequency but at all frequency range in Fig.3 and its timdmes with these controllers are aImost_ the same among the
response in experiments shows a different property ffigm four responses, but overshoots are different between each

isin0.3 <6, <1.1 case. other and they depend on the magnitudenovaershpot
comparison among fouk{., DIA Controllers for transient
TABLE | responses are summarized in Table Rlp;4; shows the
Hoo DIA CONTROLLERS AND THEIR PROPERTIES best transient performance among all four controllers in
Controller | 6, n Line style Table II.
in Fig.3 B. Disturbance Response
Kprai | 1.10 | 5.256980 x 1072 solid line Our concerns are not only in the attenuation of the initial
Kpraz | 0.80 | 5223575 x 107 | dashed line state uncertainty and the transient response, but also in the
Kpras | 0.50 | 5202185 x 10~° | dash-dot line basic control performance for external disturbances. Hence,
Kprasa | 0.30 | 5193773 x 1073 | dotted line a vertical step disturbance signal is added to the system

downward around 1.0[s] to evaluate disturbance rejection
responses, where the magnitude of the step-type disturbance
force is 0.7[N], which is abou®5[%] of the steady-state
force.
The results WithK pr a1, Kpras, Kpras andKpra4 are
shown in Fig.5. Fig.5 has a similar feature with Fig.4.
Overshoot comparison among fott,, DIA Controllers
for disturbence responses are also summarized in Table Il. A
larger choice o, shows a smaller and regulated overshoot.

VII. CONCLUSION

We had formulated and solved th¥,, DIA control
problem which considers a mixed attenuation of disturbance
and initial-state uncertainty in the infinite-horizon case,
without the orthogonality assumptions[8].

In this paper, a robustness property?of, DIA controls
o ‘ ‘ ‘ ‘ ‘ against initial-state uncertainty was discussed. We evaluated
10 10’ 10" 10 10 10 10 the effectiveness of the proposed approach via the magnetic

Frequency [ ] suspension system. The role of the weighting maiixtor
the initial statexy was definitely shown via experiments.
N is a measure of relative importance of the initial-state
uncertainty attenuation to the disturbance attenuation. A
larger choice ofN in the sense of matrix inequality order
means finding an admissible control which attenuates the
We have conducted control experiments to evaluate projritial-state uncertainty more.

Magni t ude [ dB]

Fig. 3. Frequency Responses®f. DIA Controllers

VI. EVALUATION BY EXPERIMENTS

erties of all four controllersKpra1, Kpras, Kpras and Experimental results showed the design paramgtand
Kpras. The iron ball at a standstill has been suspendettie frequency responses of the, DIA controllers and the
stably with all four controllers. weight N of the H .., DIA problem correlate closely to each

A larger choice of» means finding an admissible controlother. A larger choice of; (6, > 1.1) supplies a controller
which attenuates the initial-state uncertainty more. Thigith a higher gain at high frequency and with a larger
means the controller has a better transient response[3], [4]. A larger n shows a smaller and regulated overshoot.
Table I and Fig.3 show that a largér corresponds a higher- Effectiveness of the proposed.,, DIA control has been
gain controller at high frequency which is equivalent to shown via these experimental results.
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Step Response
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Fig. 4. Step Responses
TABLE Il
OVERSHOOT COMPARISON AMONGFOUR H oo DIA CONTROLLERS [5]
O.S. 0.S.
Controller n in Fig.4 | in Fig.5 (6]
[mm] [mm]
Kpra1 | 5.256980 x 103 0.31 0.15 -
Kpras | 5.223575 x 1073 0.34 0.17
Kpras | 5.202185 x 1073 0.36 0.19
Kpraa 5.193773 x 1073 0.38 0.21 8]
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