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Abstract— This paper deals with an application of H,,  quietness, high rotational speed, usefulness in special en
control attenuating initial-state uncertainties to the magnetic  vironments, and low maintenance. On the other hand,
bearing and examines thefl, control problem, which treats  isadyantages of magnetic bearings include the expense

a mixed Disturbance and an Initial-state uncertainty Atten- : . .
uation(DIA) control. The mixed H.. DIA problem supplies of the equipment, the necessity of countermeasures in

H., controls with good transients and assuresH.. controls ~ case of a power failure, and instability in their control
of robustness against initial-state uncertainty. On the other  systems. However, there are many real-world applications

hand, active magnetic bearings allow contract-free suspension which utilize the advantages outlined above. Examples of
of rotors and they are used for various industrial purposes. We these applications are : turbo-molecular pumps, highespee

derive a mathematical model of the magnetic bearing which - .
has complicated rotor dynamics and nonlinear magnetic SPindles for machine tools, flywheels for energy storage(4]

property. Then we apply this proposed H..DIA control for reaction wheels for artificial satellites, gas turbine eegi

the magnetic bearing, and design a robust{., controller both  blood pumps[6], and fluid pumps, etc. [5], [7].

for exogenous disturbances and for initial state uncertainties In this paper, we apply théi,, control attenuating

of the plant. Experimental results show that the proposed niti|_state uncertainties to the magnetic bearing. tRire

robust control approach is effective for improving transient derive a mathematical model of magnetic bearing systems

response and robust performance. el : h - .

considering rotor dynamics and nonlinearities of magnetic

force. Then we set the generalized plant which contains

design parameter for uncertainty and control performance.
It has been proven thakl., control problem is an Experimental results show that the proposed robust control

effective robust control design methodology and applied t@approach is effective for a mixed disturbance and an initial

a variety of industrial products. On the other hand, recenstate uncertainty attenuation and for improving transient

precision control industries and manufacturing techniel®eg response and robust performance.

requires not only robust stability of the control systems bu Il. H..DIA CONTROL

also transient performance for reference signals. Oneeof th . . ] . . o

major approach for this problem is a two-degree of freedom Consider t'he Ilpear time-invariant system which is de-

robust control. But this approach generally has a couplingn®d ©n the time intervalf oc).

I. INTRODUCTION

problem of feedforward and feedback control design. An t = Ax+ Biw+ Bou, z(0)=x
H,/H,, control approach[1] seems to be effective, but it z = Ciz+ Disu

is not easy to design such controller for MIMO complex y = Chz+ Dyjw Q)
systems.

wherex € R™ is the state and, = x(0) is the initial
state;u € R" is the control inputy € R™ is the observed
output; z € R? is the controlled outputiv € RP is the
: o disturbance. The disturbanee(t) is a square integrable
control[2], [3]. Recently, hybrid/switching control are-a function defined or{0, oc). A, By, Bs, Cy, Ca, D1» and

tively studied, this method might be one of the most . . . .
. . Doy are constant matrices of appropriate dimensions and
reasonable approach to implement them. In this paper

we apply the proposed/,, DIA control to the magnetic satisfies that
bearing, and designed a robuAt,, controller both for o (A, By) is stabilizable and A, C,) is detectable
exogenous disturbances and for initial state uncertaintie « (A, Bs) is controllable and A, Cs) is observable
of the plant. e DI,Di5 € R™" is nonsingular

Active magnetic bearings are used to support and « Dy DI € R™*™ is nonsingular
maneuver a levitated object, often rotating, via magnetiE

A mixed Disturbance and an Initial-state uncertainty
Attenuation (DIA) control is expected to provide a good
transient characteristic as compared with conventiéhal

or system (1), every admissible contrgt) is given by
near time-invariant system of the form

forces[4], [5]. Because magnetic bearings support rotor:
without physical contact, they have many advantages, e.
frictionless operation, less frictional wear, low vibrati u = J(+ Ky



( = GC(+Hy, ¢(0)=0 ()

which makes the closed-loop system given internally sta-
ble, where((t) is the state of the controller of a finite
dimension; J, K, G and H are constant matrices of
appropriate dimensions. For the system and the class of
admissible controls described above, consider a mixed-
attenuation problem state as below.

Problem 1 H., DIA control problem

Find an admissible control attenuating disturbances and
initial state uncertainties in the way that, for givéw > 0,

z satisfies

12113 < 1wl + 25 N "o ©)
for all w € L?[0,00) and all 9 € R™, s.t., (w, z0) # 0.

Such an admissible control is called tbésturbance and
Initial state uncertaintttenuation (DIA) control.

In order to solve the DIA control problem, we require
the so-called Riccati equation conditions:

T\Ti
r3

gap sensor

agnetic bearing
or

Fig. 1. Magnetic Bearing.

o &
(A1) There exists a solutionr/ > 0 to the Riccati equation e :
M (A — By(DiyD12) DL, Ch) Fig. 2. Rotor
+(A — Bo(DL, Do) DI, M
—~M(By(DyD12) 'BY — BB )M The central control (8) is a DIA control if and only if the

+CT ey — CT Do (DY, D) ' DI,y =0 (4)  condition (A4) is satisfied.

such that (A4 Q+N-'—P1>0,

A — By(DI,D15) ' DL, Cy
—By(D{yD12) "' By M + ByBf M (5)

is stable.
(A2) There exists a solutio®? > 0 to the Riccati equation
(A— B,D¥(Dyy D110y P

+P(A - B1D3, (D1 D3)) " Co)"
—P(Cy (D21 D3,)~'Cy = CT C1)P

where is the maximal solution of the Riccati equation

Q(A — B1DJ, (D21 D3)) "' Cy

+ (B1B{ — B1D3, (D31 D3,) "Dy B )P™)
+(A - B,DL (D, DI 10y

+ (B1B{ — B1D3,(D21D3,) "Dy B )P~1)7Q
—Q(B{ — D3,(Dy1D3,) " (CoP + Dyy BY ) L)"

x (Bl — D3,(D21D3,)” " (CoP + Dy By )L)Q

+B1B] — B1D3 (D1 D3) Doy B =0 (6) =0 (9)

such that with L := (I — PM) ™"
T Ty\—1
A*BlD%(D?lD%})ilC? T [1l. SYSTEM DESCRIPTION ANDMODELING
—PC5 (D1 D5, )" Coy + PCY Cy (7) _ _ _

) The experimental setup of the magnetic suspension
is stable. system[8] is shown in Fig.1 and rotor coordinate is defined
(A3) p(PM) <1 in Fig.2. The controlled plant is a 4-axis controlled type

where p (X) denotes the spectral radius of matriX,  active magnetic bearing with symmetrical structure. The
p(X) = max|\; (X)]. axial motion is not controlled actively. The electromagnet
are located in the horizontal and the vertical direction of

Then we can obtain the following result.

both sides of the rotor. Moreover, hall-device-type gap

sensors are located in the both sides of the vertical and

Theorem 1 [2]
Suppose that the conditions (A1), (A2) and (A3) are satis-
fied, then the central control is given by

u = —(D{D12) " (B] M + D{,Cy)(I - PM)~'¢
( = A(+ Byu+ PC{(Ci¢+ Dizu)

+(PC3 + B1D},)(D21D3,)  (y — C()
¢0) =0 ®)

horizontal direction.

In order to derive a nominal model of the system, the

following assumptions are introduced[5].

« The rotor is rigid and has no unbalance.

« All electromagnets are identical.

« Attractive force of an electromagnet is in proportion
to (electric current / gap length)



TABLE |

MODEL PARAMETER Attractive force of electromagnets is given by assumptions
Parameter Symbol Value . 9 . 9
Mass of the Rotor m 0.248[kg] fi= (i +0.5) _ (i; —0.5) (22)
Length of the Rotor Lg 0.269[m] 7 (g; —0.0004)2 (g; + 0.0004)2
Distance between Im 0.1105[m]
'\C/le”ter ?”?IE'e‘t‘v_"OFEag?Ket J 5.053 x 10-5[kgn?] Next we linearize the electromagnetic force (22) around
oment of Inertia abou v .053 x 10~ 6[kgm . . . .
Moment of Inertia about” 7, 1.585 x 10~3[kgm?] the operating point by the Taylor series expansions as
Steady Gap G 0.4 x 10~3[m] 9 9
Coefficients off; (¢) k 2.8 x 1077 fi = k (; +0.5)° - (f; —0.5)
steady Current(vertical) I, I 0.1425[A] J 1.6 x 107
steady Current(horizontal) | Ij3, I3 0[A] K..q.+ K. 23
Resistance R 4[Q] g5+ Rijty ) ) (23)
Inductance L 8.8 x 10~4[H] K.~ ok (I; +0.5) (I; — 0.5)
Steady Voltage(vert_ical) Ej, En 0.57[V] 3 (_4 % 10—4)3 (4 % 10—4)3
Steady \Voltage(horizontal) | Ej3, Er3 0[V] (I 1o 5) (I 0 5)
Ky = 2k R e e A
" ((—4 x1074)2 (4 x 10—4)2>

« The resistance and the inductance of the electromagnaf'€ electric circuit equations are given as followed.
coil are constant and independent of the gap length. di;(t) .
. Small deviations from the equilibrium point are L# + R(I; +i;(t)) = Ej +¢;(t) +vr;(t)  (24)
treated.
These assumptions are not strong and suitable around t
steady state operation, but if the rotor spins at super-hig
speed, these assumption will be failed. Based on the above
assumptions, the equation of the motion of the rotok’in 9i

gerezj is a deviation form steady currerd;(t) is a
ﬁ/ewatlon form steady voltagey, ; is noise.

The sensors provide the information for the gap lengths
(t). Hence the measurement equations can be written as

and Z directions in Fig.2 has been derived as follows[5]. y(t) = g;(t)+w; (25)
mijs = —Jfi3 — Vmiz — frs — Vmrs 10)  where w;(t) represents the sensor noise as well as the
mZs = mg— fin— vmin — fr1 — Umr (11)  model uncertainties.
Jyé = —J.py+ Im(fi1 + vpin — fr1 — Ume1) (12) Thus, su:_nmin? urt)hthe abtove results (18)-(25), the state-
T = —Jupb 4 Im(—fis — v + frs -+ Ors) space equations for the system are
(13) Ty _ A, pAun Ty
_ o Tp —pAuvn  An Th
wherey,(t) andzs(t) are displacements &f direction and B. 0 N
Z direction respectivelyf(t) and (¢) are angles about + { OU B } { u” ]
h h

Y direction andZ direction respectivelyyn is mass of
the rotor; g is gravity; [,,, is distance between center and + { D, 0 ] { Uy ]
electromagnet/, andJ, are Moments of Inertia abouf 0 Dy Un
axis andY” axis respectivelyp is rotation rate of the rotor; Yo c, 0 Ty Wy

. . - + (26)
f;s are electromagnetic force; ang,;s are exogenous Yh 0 Ch T, wp,
disturbance. Here the subscript 'shows the each four
directions{i1, r1, i3, r3} in Fig.1.

— T
The position variableg), and z, and the rotational To = lon gm gn g in Z”]T
variablesy andy can be transformed by using gap lengths: T = 93 9r3 Q13 gr3 s ir3]
{911,971, 913, 9-3} Which are small deviations from the u, = len eq]”, un = les ens)”
equilibrium point as follows. Ve = [Uni1 Vet vLn VLT
Ys = *(QZS + grg)/Q (14) Uh = [U’mZS Umr3 VLI3 ULTS]T
2 = —(gu +gm)/2 (15) Yo = lynyml"s yn = [yis yrs]”
0 = (11— gr1)/2bm (16) wo = [wn wn]®, wh = fwg ]
= (~g3+93)/2m 17 0 I 0
¥ (=913 + 9r3)/ 17 A = | Kudi 0 Kud,
The straightforward calculations of the above equations | 0 0 —(R/L)I |
(10), (11), (12) and (13) give the following. T I 0 7
. . N Ah = Kngl 0 KigAl
= —_ l
?ll f“!‘imz (12) I 0 0 —(R/L)IQ |
g = TR (19) [0 0 0
gis3 = —Y-+ lnﬂ.[{ (20) Avh = 0 Ay O
g.TB = 7:’; 7Zm¢ (21) L 0 0 0




[ 0
Bv = Bh = 0
| (1/L)1;
Cv = Ch = [ 12 0 0 ]
) 0
DU = Dh = Al 0
0 (1/0)I,
- Im+12,/J, 1/m—12/J,
T ym 20, me )y
- { Jo/2dy  —Jz/2Jy ]
2 —J /20, Ju)2J,

wherel, € R?*2 is unit matrix, andiK,; = Ky = Kar1,
K3 = Kpz = Koz, Kip = Kign = K, Kiz = Ky =
K3 in (22), andp is the rotor speed. Hengis equal to0

and we do not consider a rotation of the rotor in this papeiwhere the stater, and =, are defined asz,

The equation (26) can is also expressed simply as

g = Agxg+ Bgug+ Dgvo

Yy = Cyxg+ wo (27)
wherez, := [zl 2] |7, ugy == [ul u]]", vy := [vf vﬂT,
wo = [w] wﬂT and A,, By, C4, D, are constant

matrices of appropriate dimensions.
IV. CONTROL SYSTEM DESIGN
In this section, we design afi., DIA controller for the

magnetic bearing system based on the derived state-space

formula.

Let us construct a generalized plant for the magnetic
bearing control system. First, consider the system distur-

bancevy. Since vy mainly acts on the plant in a low

frequency range in practice, it is helpful to introduce a

frequency weighting factor. Hence leg be of the form

vg = Wy(s)ws (28)
I, 0
I 0
W) = | g 5 | Weols)
0 I
Woo(s) = Cuo (sl — Ay) " Buo

where W, (s) is a frequency weighting whose gain is
relatively large in a low frequency range, and is a(1,2)

element ofw . These values, as yet unspecified, can be

regarded as free design parameters.

Let us consider the system disturbaneg for the
output. The disturbance), shows an uncertain influence
caused via unmodeled dynamics, and define

wo = Wy(s)wr (29)
Ww(S) = I4Ww0($)
Wawo(s) = Cuo(sls — Awo) " Buo

whereW,,(s) is a frequency weighting function and; is
a(1,1) element ofw. Note thatl, is unit matrix in R+*4.

The frequency function$V,, and W, in (28) and (29)
are rewritten as equations in (30) and (30).

A,z + Byws
vav + Dva

Ty

Vo

P
K] )
Fig. 3.  Generalized Plant
Tw = ApTyw+ Bywi
wyg = CyupXy + Dypwy (30)

T .7 .7 71T — [T T T T
[Ivl va IUS ‘TU4] y Lw 1= [mwl wa IwS de

Next we consider the variables which we want to
regulate. In this case, since our main concern is in the
stabilization of the rotor, the gap and the corresponding
velocity are chosen; i.e.,

zg = Fyxg, (31)
I, 0 0 0 0 O
p o_ |0 200 00
g 0 0 0 Ib 0 O
0 0 0 0 I, O

21 = @Zg, o= diag[ 91 92 91 6‘2 ] (32)

where © is a weighting matrix on the regulated variables

zg, @and z; is a (1,1) element ofz. This value®, as yet

unspecified, are also free design parameters.
Furthermore the control input, should be also regu-

lated, and we define

(33)

22 = plg

where p is a weighting scalar, and, is a (1,2) element
of z. Finally, letz := [z 2T 271", wherez, denotes
the state of the functioi’, (s), x,, denotes the state of the
functionW,,(s), andw := [w? wl ", z:= [T 2I]"
then we can construct the generalized plant as in Fig.3 with
an unspecified controllek .

The state-space formulation of the generalized plant is

given as follows.

z = Az -+ Biw+ Byu
z = leL' + D12U
y = Chz+ Dyw (34)
[ Ay DG, O

A = 0 A, 0
| O 0 Ay
[0 D,D, B,

B = 0 B, , By = 0
| Bu 0 0

- [ ©F, 0 0 10
Cl - | 0 0 O :| b D12 - |: p :| )
Cy = [Cy 0 Cul, Do=[ Wy 0]
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Since the disturbances represent the various model
uncertainties, the effects of these disturbances on tloe err
vector z should be reduced.

Next our control problem setup is defined as;
Control problem! 'find an admissible controllek (s) that

attenuates disturbances and initial state uncertaintes t

achieve DIA condition in (3) for generalized plant (34).
After some iteration in MATLAB environment, design
parameters are chosen as follows;
8000
Wls) = 00
Waols) = 0.3s% +1479.7s + 7.2983 x 10°
wols) = 2 + 5 + 2.4328 x 107
0 = dzag 91 92 01 92 ]
6, = diag| 05 0.5 ]
6o = diag| 0.0005 0.0005]
p = 80x107"I

Frequency responses &,o(s) and W,(s) are shown
in Fig.4 and Fig.5 respectivelyi,,o(s) represents an

uncertainty for the 1st bending mode of the rotor at the

resonance frequen@00[Hz].

Direct calculations yield the 24-ordét., DIA central
controller Kpr4 and its frequency response is shown in
Fig.6.

The maximum value of the weighting matriX in the
DIA condition (3) is given by

N = 1.3265979325391 x 1077 x Iy (35)

V. EVALUATION BY EXPERIMENTS
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Fig. 6. Frequency Responses BHf..DIA Controllers

The notch filter has a notch 2000[Hz] and its transfer
function is as follows.

s +1.5791 x 108
52 4+ 125665 + 1.5791 x 108

The objective of this experimental comparison is to eval-
uate control performance for transient property and robust
performance. The experimental results are shown in Figs.
7-10. In Figs.7-8, step responses for a reference signal are
shown, where the step size is 0.05[mm] and the steady-
state gap is 0.4[mm]. Comparing with PID contrél,,

DIA control shows a quick response and a good disturbance
attenuation property. Figs. 9-10 show properties of robust

(36)

We conducted control experiments to evaluate propefyerformance for step-type disturbance. A 60[g] weight is

ties of the designedi,, DIA controller comparing to a
PID controller with a notch filter. The PID gain is chosen
as

K, = 8400 x I,
K; = 15000 x I
K, = 6xI,.

attached to the center of the rotor as a model perturbation
and a step-type force disturbance is addedtb and —r1
directions in Fig.1, where the magnitude of the disturbance
is 1/6 steady-state vertical attractive force.

From Figs.9-10, we can see thét,DIA control has a
good transient response and robust performance comparing
with PID control with notch filter.
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