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Abstract

This paper deals with a generalized H, control atten-
uating initial-state uncertainties. An H, control prob-
lem, which treats a mixed attenuation of disturbance
and initial-state uncertainty for linear time-invariant
systems in the infinite-horizon case, is examined. The
mixed attenuation supplies H., controls with good tran-
sients and assures H., controls of robustness against
initial-state uncertainty. We derive a necessary and suf-
ficient condition of the generalized mixed attenuation
problem. Furthermore we apply this proposed method
to a magnetic suspension system, and evaluate attenu-
ation property of the proposed generalized H., control
approach.
keywords: H,, Control, DIA Control, Initial-State
Uncertainties, Magnetic Suspension Systems

1 Introduction

H_, control for linear time-invariant systems attenuates
the effect of disturbances on controlled outputs and is
originally defined under the assumption that the initial
states of the system are zero. Initial states are often
uncertain and might be zero or non-zero. If the ini-
tial states are non-zero, the system adopting an H,
control will present some transients as the effect of the
non-zero initial states, to which the H,, control is not
intrinsically responsible. It is expected that the mixed
attenuation of disturbance and initial-state uncertainty
in controlled outputs supplies H., controls with some
good transients and assures H., controls of robust-
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ness against initial-state uncertainty. Recently, hy-
brid /switching control are actively studied, this method
might be one of the reasonable approach to implement
them. In the finite-horizon case, a generalized type of
H, control problem which formulated and solved by
Uchida and Fujita[l] and Khargonekar et al.[2]. This
problem was extended to the infinite-horizon case, and
a result was derived by Uchida et al.[3](see also Khar-
gonekar et al.[2]). The problem discussed in [3] was,
however, limited to time-invariant systems satisfying
the orthogonality assumptions [4, 5]. This is an im-
mensely serious problem as a matter of fact, if we apply
this problem setup to the real physical control system
design. The previous mixed attenuation of disturbance
and initial-state uncertainty in the infinite-horizon case
is not sufficient[6] in practice, because time-invariant
systems satisfying the orthogonality assumptions re-
strict the degrees of freedom of the control system de-
sign, and have difficulties in regulating control inputs[6].

In this paper, we have formulated an infinite horizon
disturbance and initial state uncertainty attenuation
control problem without the orthogonality assumptions.
The solution based on [4] is given as a natural but com-
plicated extension of the previous results in [3, 6]. A
necessary and sufficient condition for a solution to ex-
ist, together with an explicit formula of the solution,
is derived. Based on the condition, a robustness prop-
erty of H,, controls against initial-state uncertainty is
discussed. Moreover, we apply the proposed approach
to a magnetic suspension system, and evaluate the ef-
fectiveness of the generalized H., control attenuating
initial state uncertainties comparing with the previous
results[6].



2 Problem Statement

Consider the linear time-invariant system which is de-
fined on the time interval [0, 00) and described by

& = Az + Byw+ Bou, z(0)=ux
z = 0127 + D12U
y = Chx+ Daw (1)

where © € R" is the state and zg is the initial state;
u € R" is the control input; y € R™ is the observed
output; z € R? is the controlled output; w € RP is the
disturbance. Without loss of generality, we regard ¢
as the initial-state uncertainty, and zo = 0 as a known
initial-state case. The disturbance w(t) is a square inte-
grable function defined on [0, 00). Note that this system
does not have the orthogonality assumptions[5]. A, By,
B>, C1, C3, D15 and D5y are constant matrices of ap-
propriate dimensions and satisfies that

e (A, B;) is controllable and (A, C}) is observable
e (A, By) is controllable and (A, C2) is observable
e D{,D, € R"™™" is nonsingular

e D, DI € R™*™ is nonsingular

For system (1), every admissible control u(¢) is given by
a linear time-invariant system of the form

v = J(+ Ky

( = G(+Hy, ¢(0)=0 (2)

which makes the closed-loop system given by (1) and
(2) internally stable, where ((t) is the state of the con-
troller of a finite dimension; J, K, G and H are constant
matrices of appropriate dimensions.

For the system and the class of admissible controls de-
scribed above, consider a mixed-attenuation problem
stated as below.

Problem 1 DIA Control Problem

Find an admissible control attenuating disturbances and
initial state uncertainties in the way that, for given N >
0, z satisfies

12113 < [lwll3 + 25 N "o (3)

for all w € L?[0,00) and all zo € R", s.t., (w,zo) # 0.

We call such an admissible control the Disturbance and
Initial state uncertainty Attenuation (DIA) control.
The weighting matrix IV on zy is a measure of relative
importance of the initial-state uncertainty attenuation
to the disturbance attenuation. A larger choice of N
in the sense of matrix inequality order means finding
an admissible control which attenuates the initial-state
uncertainty more. In the special case when the initial
state is known, that is g = 0, the problem is reduced
to finding an admissible control which assures that

12112 < [lwll3 (4)

for all w € L?[0,00). Then, we call the admissible con-
trol the Ho, control as usual.

3 Mixed attenuation of disturbance and
initial-state uncertainty

From the definition, a DIA control should be an H,
control when the initial state is known(zy = 0). This
implies that, in order to solve the DIA control problem,
we require the so-called Riccati equation conditions:

(A1) There exists a solution M > 0 to the Riccati
equation

M (A — B2(D{,D12)~' Di,C1)

+(A = By(DiyD12) DL, C) M
—~M(By(DL,Dyy) 'BY — BiBIYM

+clc, — ¢l Dyy(DL, D) *DL,CL =0 (5)

such that

A - By(DL,D12) ' DL Cy
—By(D{yD15)""BI M + Bi B[ M (6)

is stable.
(A2) There exists a solution P > 0 to the Riccati

equation

(A — B,DI (Dyy D) 1Co)P

+P(A— B, DI (Dy, D)7 Cy)T

-p(CcI(Dy D)0, —CTCy)P

+B,B] — BiD¥,(D2: D) 'DyyBF =0 (7)

such that

A — B, DY (Dyy DL)1Cy



-pcl (D, DY 0, + PCT Oy (8)

is stable.

(A3) p(PM)<1,
where p (X) denotes the spectral radius of matrix X,
and p (X) = max|\; (X)|.

Then we can obtain the following result.

Lemma 1 Suppose that the conditions (A1), (A2) and
(A3) are satisfied, then the central control satisfies the
following inequality.

12113 < llwll3 + =g P~ (9)

for allw € L?[0,00), and all zg € R™, s.t., (w,zo) # 0,
where the central control is given by

= —(D{yD12) M (B M + Di,Ch)(I — PM)~'¢
¢ = A(+ Bou+ PO (C1¢ + Dyyu)
+(PCY + B1D3,)(D21D3) ™ (y — C20)
) =0 (10)

and S := M(I — PM)~*.

Proof:  First note that S = M (I — PM)~! satisfies
the Riccati equation

S(A+ PCLCy — (By + PCID15)(DT,D1y) 1 DL Cy)
+(A+ Pclc
— (By + PC D15)(DL,D15) ' DL, C)T'S
—S((By + PCI'Dy2) (DT, D15)"Y(By + PCI'Dy5)T
— (PC3 + B1D3,) (D21 D3,) ™' (PCY + BiD3;)")S
+ctoy — I Do (DL, D) ' DL,CL =0 (11)

Consider the functional V' (¢),
V) =S¢+ @-Q P -0 (12)

then, differentiating both sides with respect to t, and
inserting conditions (A1)-(A3) into the right hand side,
we have
V() = =zl +lw|?
+[[(DfyD12)?u + (DY, Dy2) 7"/
x (By M + D{,C1)(I — PM)~'(|?
—||w — Dgl (Dnggl)_l(CQP + D21B1T)SC
— (B{ = D3,(D21D3,) " (CoP + D1 BY))
x P~z = Q)II? (13)

integrating both sides with respect to ¢ over the interval
[0,00), we obtain the left hand side as

V(00) =V (0) = —z3 Pl
implying the control input u(t) as (10), and

—zg5 P wo = 215 + |lwlf3
—|lw — DL (Dyy DI)~Y(Co P + Dy BT)SC
— (B = D3,(D21D]))" (CoP + Doy BY))
x P~z — Q)3 (14)

then we finally obtain as

12113 < llwll + 25 P~"o

This Lemma, is concerned with the condition for P, not
for N. This conclusion does not solve the infinite hori-
zon DIA control problem, because the inequality (9)
does not generally imply the inequality (3). Next, the
following condition is assumed.

(Ad) N<P, (N7'>P71).

If the condition (A4) holds, the inequality (3) follows

from the inequality (9), and the central control (10) is
a DIA control.

12113 < llwll3 + 25 P~"zo < [lwll3 +zg N~ ey (15)

Since NV is regarded as a measure of initial state uncer-
tainties, e.g., a variance matrix, we can state that, if
the initial state uncertainty is sufficiently small (so that
(A4) holds), the central control has robustness against
the initial state uncertainty. In view of the discussion
above, the condition (A4) seems necessary for the cen-
tral control to be a DIA control. We will show that
this is not true by presenting a necessary and sufficient
condition, which is the main result of this paper. In
order to state the result, let us introduce the following
condition:

(A5) Q+ N1 -P71>0,
where () is the maximal solution of the Riccati equation

Q(A - B, DY, (Dy; DI 710,
+ (BiB! — B, DL (Dy, DI~ Dy BT)P~1)
+(A — B, DL (Dy, D110,
+ (B1B{ — B1D3,(D21D3,) ' DBl )P~1)"Q



—Q(Bf — D3,(D21D3,) " (C2P + Dy B ) L)"
x (B{ — D3,(D21D3,)" " (C2P + Dy B )L)Q
—0 (16)

with L := (I — PM)™".

Theorem 1 Suppose that the conditions (A1), (A2),
and (A3) are satisfied. The central control (10) is a DIA
control if and only if the condition (A5) is satisfied.

Remark 1 The Riccati equation (16) has the mazimal
solution Q > 0 for any P~'. such that

A — B, D (Dyy D) 1Cy
+(B1Bf — B, DI (Dyy DL)~' Dy BT P!
—(B] = D3, (D1 D3,)""(CoP + Dy B )L)"
(Bl = D, (D> D3,) "(CoP + Dy B] ) L)Q (17)

is stable, since (A, By) is stabilizable. Hence, (A4) is a
sufficient condition for the condition (A5) to be satis-

fied.

4 Proof of Theorem 1

We prove Lemma 2 and Lemma 3. Then Theorem 1
follows. Lemma 2 and Lemma 3 require the following
condition:

(A6) : For all (w) € L?[0,00) and all 2y € R", s.t.,
(w, zp) # 0, the inequality

lw — woll3 + 3 (N7' = P7') 2o >0 (18)

holds, where wy is given by

wo = Dgl(Dnggl)_l(CQP + D21B1T)SC
+(BY — DI, (D3 D))= (CyP + Doy BT))
xP~ Yz — ) (19)
( = (A+PCTC, — (By + PCI D) (DT, Dy5) 7t

x (B3 M + DL,C1)L
+(PC3 + B1D3))(DxD3)) *
x (CoP + Dy BI)S)¢
+(PCT + B, DI )(Dy; DI) 1Dy
x (w —wp) (20)

Lemma 2 Suppose that the conditions (A1), (A2), and
(A3) are satisfied. The central control (10) is a DIA
control if and only if the condition (A6) is satisfied.

Proof: Consider the functional V(t) = ¢TS¢ +
(z — ()T P71 (x — (), then, differentiating both sides
with respect to ¢, and inserting (1) and (10) into the
right hand side, and integrating both sides with respect
to t over the interval [0, 00), we obtain

—ag P lwo = —||2l3 + w3 — [lw —woll3  (21)
Insert (21) into (18), then, we have
12113 < llwll3 + 25 N~ zo. (22)
Converse, insert (21) into (3), then, we have
lw = woll3 + xd (N7 =P ') zo >0 (23)

Lemma 3 Suppose that the conditions (A1), (A2), and
(A3) are satisfied. The condition (A6) is equivalent to
the condition (A5)

Proof: Consider the functional U(t) := f7'Qf, where
f(t) :=x(t) — L(t) is given by

f) = (A+Bi(B] — D3 (DsD3,)"
X(CQP + DlelT))Pil)f
+ (B1 — L(PCY + B1D,)(D21D3,) D)
x(w —wp), f(0)=wxg. (24)

Differentiating both sides with respect to ¢ and com-
pleting the square argument as

U(t) = |lw—wo+ (B] —DJ(D2a1D3,)~"
x (C2P + D21 B )L)Q f|I?

~[lw — woll? (25)

then, integrating both sides with respect to ¢ over the
interval [0, 00), we finally obtain

2 Qo = ||lw—wo+ (B — D], (D21 DJ))"

x(CyP + D21B1T)L)Qf||§
—[|w — wol|3 (26)

Inserting (26) into the condition (A6), then we have

llw — wo + (B — D, (D21 D3,)~"
x(C2P + D21 B )L)QfII3
+2f (Q+N =P Yz >0 (27

The 1st term in the left hand side are positive, hence

Q+N'—P1>0.



5 Application to Magnetic Suspension Systems

The state-space representation of the magnetic suspen-
sion system is given as follows[6, 7].

t, = Agxy+ Byug+ Dyvg (28)
yg = Cyzg+wo

where z, ;= [z & i]T, ug is a control input, vy and wg
are exogenous disturbance inputs, z(¢) is a gap between
the electromagnet and a suspended iron ball, and i(t)
is a current. First, let us consider the disturbances wvg
and wp. Since vy mainly acts on the plant in a low
frequency, and wp shows an uncertainty caused via un-
modeled dynamics. Hence let vy and wg be of the form

vo = W, (s)ws (29)
W, = ®C,(sI—A,) "B, ®=[1 1]"
Wy = Wwwl (30)

where W,, is a weighting scalar. Next we consider the
variables which we want to regulate. In this study, the
gap and the corresponding velocity are chosen. Then,
as the error vector, let us define as follows;

1 00
29 = Fyry, Fy= [ 01 0 ] (31)
21 = Oz, O©=diag[ 01 6], 2 =pu (32)

where © is a weighting matrix on the regulated vari-
ables z,, and p is an weighting scalar for the reg-
ulation of the control input u(:= wuy). Finally, let

w:=[2] zT]", where z, denotes the state of W, (s),
and w = [w?l wl]", z:=[27 2T]", then we can

construct the generalized plant as in (33). Note that this
plant does not have the orthogonality assumptions[5].

= Az + Biw + Byu

= Chiz+ Dysu
= CQ$+D21'LU (33)
| Ay Dy4Cy | 0 DygDy | By
A=l a4, |"B=]0 B, "B 0
OF, 0 0
o= | % ] el

Co=[Cy 0], Duy=] Wy 0]

Now our control problem setup is: find an admissible
controller K (s) that attenuates disturbances and initial
state uncertainties to achieve DIA condition in (3).

After some control design iteration, the design parame-
ters; W, (s), Wy, © and p are chosen appropriately, and
a direct calculations yield the Ho, DIA controller K (s).
The frequency response of the controller K (s) is shown
in Fig.1 by a solid line. And the maximum value of the
weighting matrix N is N = 2.7735 x 1072 x I. We de-
signed the standard H., controller denoted as Ko, [7]
via the MATLAB command hinfsyn.m. The frequency
response of the controller K., and the previous DIA
controllers Kpra,(s) and Kpra,(s)[3, 6] are shown in
Fig.1 by a dotted line, a dashed line and a dash-dot line,
respectively. Comparing these four controllers, K(s)
has a high gain at the low frequency and a good roll-off
property at the high frequency, and the comprehensive
frequency response looks like a modified PID controller.
In the previous DIA design framework, it was difficult
to let controllers Kpra, (s) and Kpra,(s)[3, 6] get hold
an integral property.

We have conducted simulations to evaluate properties
of K(s). To ascertain transient responses, we input a
step reference signal to the system with a nonzero initial
state rg. An initial response for zo = [0.0 0.0 0.1]%
is shown in Fig.2, and a time response for a step ref-
erence signal(0.0lmm] — 0.1[mm]) is shown in Fig.3,
where the signal is added to the system around 1.0[s].
The Kpra, and Kpra, show relatively better perfor-
mance than K for the initial state uncertainty in Fig.2,
K has, however, a better transient performance than
K. Since our concerns are not only in the attenu-
ation of the initial state uncertainty, but also in the
basic control performance of the controllers, we then
wonder whether the controller has a good performance
for the step reference signal. Controller K shows better
and quicker transient response than K.,. Kpra, and
Kpra, show pretty quick responses but bigger over-
shoots around 1.0[s] because of their high gain at the
high frequency in Fig.1, however we must give careful
attention for steady-state error with those controllers.
Kpra, and Kpra, leave steady-state errors because of
their low gain at the low frequency in Fig.1. In the
previous problem setup, the degrees of freedom in the
design parameters are limited, so that it is difficult to
shape a good controller frequency response[6]. Consid-
ering all the factors, we reached the conclusion that K
has a pretty good performance for all control require-
ments, and has a potential ability to be improved by
using the degrees of freedom in the design parameters.



6 Conclusion

In this paper, we formulated and solved a generalized
H_, control problem which considers a mixed attenua-
tion of disturbance and initial-state uncertainty in the
infinite-horizon case, without the orthogonality assump-
tions. The solution was given as a natural but com-
plicated extension of the previous results in [3, 6]. A
necessary and sufficient condition for a solution of the
generalized H,, mixed attenuation problem to exist, to-
gether with an explicit formula of the solution, was de-
rived. Based on the condition, a robustness property of
H, controls against initial-state uncertainty was dis-
cussed.

Moreover, we applied an infinite horizon disturbance
and initial state uncertainty attenuation control prob-
lem without the orthogonality assumptions to the mag-
netic suspension system. Comparing the proposed con-
troller with the standard H., controller and the other
controllers based on previous results[6], we showed the
property and effectiveness of the proposed mixed atten-
uation controller.
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