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Abstract– The focus of study is to discuss a statistical behavior of FIM in each EKF update and determine its potential in
providing sufficient information about Robotic Localization and Mapping problem with intermittent measurements. We
provide a theoretical analysis result and prove that the FIM can successfully describe both upper and lower bounds for
the state covariance matrix whenever measurement data is not arrived during robot observations. This approach can give
a better picture on how information are processed in EKF when measurement data is partially unavailable. Simulation
evaluations are included to verify the results and consistently demonstrate the expected outcome.
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1 Introduction
The robotic localization and mapping problem or alter-

natively known as Simultaneous Localization and Map-
ping(SLAM) problem1, 2) has been one of the fascinating
themes in robotic research. SLAM demonstrates a condi-
tion of a robot or multi-robots which attempt to localize
itself or themselves in an unknown environment while at
the same time incrementally building a knowledge about
its surroundings. These information are expressed in dif-
ferent kinds of ways, which are then used to achieve sev-
eral task in diverse environments such as in mining, space
exploration, or in hazardous area. See Fig.1 for details il-
lustration about the SLAM problem.

Generally, most of the approaches in SLAM can be
divided into two techniques, which are the parametric
and non-parametric methods. Some of parametric ap-
proaches has been proposed such as the Extended Kalman
Filter(EKF), Unscented Kalman Filter(UKF), and H∞
Filter(HF)3, 4). In the other hand, Histogram Filter, and
Particle Filter are those methods which representing the
non-parametric techniques.
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Fig. 1: SLAM problem

EKF-SLAM consistency and convergence properties
have been discussed by some literatures1, 2). They proved
that the state covariance is monotonically decreased for
both stationary and moving robot cases. The EKF incon-
sistency was also explained to describe the source of the
problem. Related to this, CRLB12) is one of the avail-
able approaches used to demonstrate consistency. Z.Jiang
et.al6) carried a CRLB evaluation for EKF-SLAM to deter-
mine the estimation behavior by considering several con-
ditions. Andrea6) studied the general SLAM accuracy with
a known map by analyzing both process and measurement
models using Fisher Information Matrix(FIM).

A case of EKF-SLAM with intermittent measurement is
discussed in this paper. Based on Bernoulli process9, 10), it
is possible to gain information about the estimation when-
ever measurement data is not available for some time in-
terval. In probabilistic, these information are accessible
through the system state error covariance. Until now, the
intermittent measurements studies are mainly focused on
linear and networks packet drops. Sinopoli et.al 9) claimed
that there exist upper and lower bounds of state error co-
variance and their results has immense the research of in-
termittent measurement. S.Kluge reported that the esti-
mation error will not be bounded if the initial state co-
variance, process and measurement error are too big under
some relaxation of EKF assumptions. We show analyt-
ically the effect of these variables in this paper. In ad-
dition, the investigation of intermittent measurements are
very limited for robotic system. One of them was demon-
strated by Payeur15). He combines information from Jaco-
bian transformation. Then by utilizing occupancy grid ap-
proach, he explains the condition when measurement data
is partially loss. A scanning strategy also has been pro-
posed to overcome such a situation in EKF-SLAM to oc-
cupy the system with an appropriate information 16). How-
ever, none of them have reveals the theoretical explana-
tion underneath. With regards to these papers, we propose
the analysis using FIM12) to provide a clearer notation in
pursuing a SLAM problem whenever measurement data is
unavailable.

In this paper, we derive the upper and lower bounds of
the updated state error covariance by using FIM during
intermittent measurement. We have found that based on
FIM, the information is still available during intermittent
measurement whether the measurement data is lost for a
shorter time or longer time. Concurrently with the esti-
mation, the upper and lower bounds about the state er-
ror covariance are also obtained. The updated state er-
ror covariance never surpassed the given bounds whether
the measurement data is lost whether only for one sam-
pling time or more. We also theoretically show that the
uncertainties are gradually increasing when measurement
data is unavailable. Based on the simulation results, the
robot only has its confidence about the estimation when
measurement data is available. As a result, FIM could be
an alternative techniques to define the system upper and
lower bounds when intermittent measurement is happen.
Additionally, we guarantee that CRLB can be evaluated
for SLAM problem13, 14).

2 EKF-Based SLAM
The SLAM problem can be described by process and

measurement models. The process model describes the
kinematic movement of the robot while the measurement
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model defines the behavior of sensors measurement when
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Fig. 2: Process model(left) and measurement model(right)
of mobile robot localization and mapping problem

robot moving through the unknown environment. These
two models are shown separately in Fig.2.

For process model, we consider a nonlinear discrete-time
dynamical model as follows.

θk+1 = θk + fθ (ωk,vk,δω ,δv) (1)

Xr
k+1 = Xr

k +(vk + δv)T cos[θk] (2)

Y r
k+1 = Y r

k +(vk + δv)T sin[θk] (3)

Lk+1 = Lk (4)

where the robot states∈ R
3 are represented by the mobile

robot pose angle θk, and Xr
k ,Y r

k are the x,y cartesian coor-
dinate of the mobile robot. While, Li

k ∈R
2m,m = 1,2, ...,N

is each respective landmark location in xi,yi coordinate
frame. Robot turning rate is defined by ωk and its velocity
by vk. δω ,δv are the associated process noise to the mo-
bile robot turning rate and its velocity respectively. T is
the sampling rate. The process model for the landmarks is
unchanged as the landmarks are assumed to be stationary.
Eqs.(1)-(4) are now represented by Xk+1 as an augmented
state.

Based on process model, the robot motions are pre-
dictable and we can calculate the robot position at any
time by using any robot proprioceptive sensors such as the
encoder. However, are the calculations refer perfectly to
the robot actual location? In this perspective, probabilis-
tic SLAM provides a level of certainty about the estima-
tion. In each robot motions, probabilistic method consid-
ers about the disturbances due to robot wheel misalign-
ment and slippage by incorporating the analysis of state
error covariance. The state error covariance determines
the uncertainties of the system. Essentially, probabilistic
SLAM is divided into two parts; prediction and update
stage to comprehend about the system. This is shown as
follow. As we applying EKF-SLAM algorithm, the pre-
diction process is stated by

X̂−
k+1 = f (X̂k,ωk,vk,0,0) (5)

There are no process noise included in the prediction such
that δω = 0,δv = 0 and the initial robot velocity and its
angular acceleration are given. X̂−

k+1 is the estimated aug-
mented mobile robot and landmarks state with its associ-
ated covariance Pk+1 ∈ R

3+2m and it is shown by the fol-
lowing equation.

P−
k+1 = frPk f T

r + fωvΣk f T
ωv (6)

Here fr is the Jacobian evaluated from the mobile robot
motion in (1)-(3), and Σk is the control noise covariance.
Pk is the previous state error covariance. For T = 1, the
Jacobian for the process model yield the following expres-
sion.

fr =

⎡
⎣ 1 0 0 0
−vsinθ 1 0 0
vcosθ 0 1 0

0 0 0 In

⎤
⎦ , fωv =

[
gωv
0

]
(7)

where fωv is the linearized process noise. We assume no
process noise for landmarks. Therefore the linearized pro-
cess noise for robot motion is gωv. In is an identity matrix
with an appropriate dimension.

The mobile robot then makes the observations about it
surroundings using its exteroceptive sensor and the behav-
ior is shown by the following equations.

zik+1 = γk+1

[
ri
φi

]

= γk+1

[√
(xi −Xr

k+1)
2 +(yi −Y r

k+1)
2 +vri

arctan
yi−Y r

k+1
xi−Xr

k+1
−θk+1 +vθi

]
(8)

Equation (8) is then linearized and represented by

zik+1 = γk+1HiXk+1 + vriθi (9)

where ri and φi are the relative distance and angle between
robot and any observable landmark. Above equation de-
fines that the mobile robot keeps measuring relative dis-
tance and angle between itself and any ith landmark with
some associated noises of vri , vθi . Note that we simplify
these noises by vriθi in (9). Furthermore, γk+1 explains
the stochastic behavior of measurement data whether it is
available or not for a period of time. This variable relies
on the Bernoulli process and has the following properties.

Pr{γk+1 = 1} = p

Pr{γk+1 = 0} = 1− p

E[γk+1] = E[γ2
k+1] = p

The mobile robot measurements can be represented by
using Jacobian as mentioned by the following equation.

Hi =

[
0 − dxk

r − dyk
r

dxk
r

dyk
r

−1 dyk
r2 − dxk

r2 − dyk
r2

dxk
r2

]
(10)

where r =
√

(xi −Xr
k+1)

2 +(yi −Yr
k+1)

2, dxk = xi −Xr
k+1

and dyk = yi −Yr
k+1. Same as the process model, again the

state error covariance is analyzed to obtain the efficiency
about the estimation after measurement. The updated state
error covariance P+

k+1 is represented by below equation.

P+
k+1 = P−

k+1− γk+1Kk+1∇HiP
−
k+1 (11)

where Kk+1 = P−
k+1HT

i (HiP
−
k+1Hi

T +Rk+1)−1. Using these
information, the corrected state update X̂+

k+1 is represented
by

X̂+
k+1 = frX̂

−
k+1 + γk+1Kk+1(HiXk+1 −HiX̂

−
k+1)(12)

Both of these models are then going through prediction
and update recursively as long as the robot keep observing
its surroundings. In this paper, we are concern to look into
the uncertainties behavior whenever intermittent measure-
ment occurs in SLAM. Thereby, we assume that the data
association are perfectly given and the robot is in a planar
environment.

In addition, the same characteristics about above mea-
surement characteristics during intermittent measurement
was also obtained by previous results9, 10, 11). The mea-
surement innovation defines that whenever measurement
data is unavailable, then the estimation is based on the fol-
lowing result.

Hi(Xk+1 − X̂−
k+1) = γk+1Ak+1(Cmk+1 −Vk+1) (13)



where Ci
mk+1

and Vk+1 show the landmarks xi,yi and robot
Xr

k ,Y r
k location respectively. Ak+1 is the linearized mea-

surement matrix and is included in Eq.(14) later. Above
equation portrays the resulting characteristics of the mea-
surement model and agrees that γ shows the statistical
bound of the measurement model. Ak+1 is the Jacobian
for measurement at point A and is shown by

A =

[ dxA
rA

dyA
rA

− dyA
r2
A

dxA
r2
A

]
, dxA = [xi − xA] (14)

dyA = [yi − yA] , rA =
√

dx2
A +dy2

A (15)

2.1 Fisher Information Matrix
The FIM which is the inverse of CRLB11, 13) emphasizes

that the covariance matrix Pk of an unbiased state estimator
x̂k has a lower bound and is given by

Pk+1 = E[(Xk+1 − X̂−
k+1)(Xk+1 − X̂−

k+1)
T ] ≥ J−1

k+1 (16)

Jk is the Fisher Information Matrix (FIM) and hold an
equation as stated below.

Jk+1 = D22
k+1 −D21

k+1(Jk+1 +D11
k+1)

−1D12
k+1 (17)

In a nonlinear case, each element of the above expression
is specified by the following equations.

D11
k+1 = f T

r Q−1
k fr

D12
k+1 = − f T

r Q−1
k = [D21

k+1]
T

D22
k+1 = Q−1

k +HT
i R−1

k+1Hi

where Qk = fωvΣk+1 f T
ωv, and fr defined in (7), and Hk is

already defined in (10). Further substitution of above el-
ements to (14) and at the same time by utilizing Matrix
Inversion Lemma, (14) yields below expression.

Jk+1 = ( frJ
−1
k+1 f T

r +Qk)−1 +HT
i R−1

k+1Hi (18)

Under this condition, if a filter achieves the condition
(16), then the filter is said to be efficient for estimation.
For a given system which posses an initial state covariance
P0, the initial FIM hold the following property, J0 = P−1

0 .

3 FIM Statistical Bound for SLAM
Following preparations are made to investigate the EKF-

based SLAM efficiency using CRLB. Our paper aids the
analysis for the literatures such as Z.Jiang et.al6). Never-
theless, we refine the uncertainties bound for SLAM under
FIM representation. These information should assist bet-
ter interpretation whenever a measurement data is missing.
To give a better picture of measurement model, for a mo-
bile robot observing a landmark at point A, the Jacobian
matrix is given by

HA = [−e −A A] , e =
[
0
1

]
(19)

and the definitions for other elements in A has been given.
These variables have same meanings with respect to (10)
and regarding to the observation at a specific point.

Assumption 1 Both of the process and measurement
noises holds the following characteristics.

E

([
wk+1 0

0 vk+1

][
wk+1 0

0 vk+1

]T
)

=
[
Qk+1 0

0 Rk+1

]
where wk+1 is the process noise variance and vk+1 is the
measurement noise variance. Qk+1 ≥ 0 and Rk+1 > 0 are
the process and measurement noise covariances respec-
tively.

By utilizing (16), the convergence behavior of EKF state
error covariance must satisfy the following order.

Pk > Pk+1 > · · · > Pn

Analogously, this means that Pk > Pk+1 ≥ J−1
k+1. This

property also explains that FIM can be used to describe the
lower bound of the state error covariance. Furthermore,
FIM can be employed to acquire the upper bound of state
error covariance. Hence, FIM sufficiently acts as a tool to
evaluate the whole system whenever measurement data is
intermittently missing during robot observations about it
surroundings. It also can demonstrate the system uncer-
tainties at each respective update.

We now present the FIM analysis whenever measure-
ment data is not arrived. In our approach, we analyze FIM
behavior in each estimation to obtain the upper and lower
bound of the state error covariance. The lower bound is
actually described by CRLB which utilizes FIM to demon-
strate a minimum level that a state error covariance of a fil-
ter can achieved. Based on (16) and aforementioned defi-
nition of intermittent measurement, the FIM now yield the
following expression.

Jk+1 = ( frJ
−1
k f T

r +Qk)−1 + γk+1HT
i R−1

k+1Hi (20)

where γk+1 described the stochastic behavior of measure-
ment data arrival at time k + 1.

To visualize more about above expression, consider
a stationary robot observing a landmark at a point for
n−times observations. In this case, the FIM for n−times
observations Jn

k+1 is represented by the following equation.

Jn
k+1 = ( frJ

−1
k f T

r +nQk)−1 +nγk+1HT
i R−1

k+1Hi(21)

Stated above, it can be concluded that the measurement
update is very important to the system. If more observa-
tions are being made by the robot without any lost of mea-
surement data, then the state error covariance will exhibit
smaller uncertainties as more information are available.

Remark 1 Note that observing only a single landmark
n−times is insufficient for the robot to localize itself in
an unknown environment. However, according to S.Huang
et.al2), this characteristic is important to understand how
the estimation is done and in what manner does the mea-
surement data can improved the estimation at each obser-
vation.

Proposition 1 If the initial state covariance and both pro-
cess and measurement noises are very big, the estimation
has very big uncertainties whenever measurement data is
not arrived. The condition become worse if the measure-
ment data is not available for longer time such that

lim
k→∞

J∞ = (P0 +Qk)−1 → 0 ∀k > 0

Proof The comparison test is used to evaluate the propo-
sition. Assume that robot is stationary at point A and starts
observing its surroundings. If no measurement data is
available, after one update and the next update we have

Jk = (P0 +Qk)−1

Jk+1 = (P0 +Qk +Qk+1)−1 ≡ (P0 + 2Qk)−1

Assume that process noise has almost same magnitude for
each prediction as mentioned above. As Pk = J−1

k , and
k → ∞, we represent above conditions as



lim
k→∞

J∞ = (P0 + kQk)−1 < (P0 + kQk)−1 +HT
i Rk+1Hi

As a result, the longer measurement data is unavailable,
then the state error covariance is going to be ∞ which
means the estimation continuously diverges. �

Therefore, this situation cannot guarantee a better result
as initial state covariance, process and measurement noises
still affects the estimation performance. This proposition
implies that intermittent measurement in SLAM may lead
to unfavorable circumstances about the estimation.

Look upon a case when a measurement data is not avail-
able at certain time k(k = 1,2, ...). Notice that the FIM
will refer to its previous information as no measurement
data is arrived at a certain time to update the system. Mo-
tivated by this condition, we conduct a deterministic study
to derived FIM lower and upper bounds for the system.

Definition 1 For an initial state covariance P0 > 0, there
exist a real random number ρk > 0 and Qk ≥ 0 for each
EKF update such that

ρk = frPk f T
r > 0 (22)

Jk(≤ ρk) > 0 (23)

Qk = fωvΣk f T
ωv ≥ 0 (24)

The first definition simply interprets that the state error co-
variance matrix always yields a positive definite matrix in
each update. It is a main property to be analyzed in prob-
abilistic SLAM. Equation (23) is very important to ensure
that at least a solution exists during estimation. Lastly,
(24) is a definition that the Jacobian of process noise is at
least a positive semidefinite matrix at each time.

Remark 2 Suppose that Qk is a singular, Qk can be sub-
stituted by Qk + εI for some very small positive ε11). Such
a case is being considered in most SLAM problem, which
assumes that there are almost no process noise for land-
marks. By this setting, Qk becomes a non-singular matrix
and therefore enabling us to examine the behavior and its
effect in the case of intermittent measurements. We assume
that in every process, the process noise is represented by

Q̄k = fvω Σk f T
vω + εIn

This equation holds in each respective robot movement un-
less otherwise stated.

Applying the Matrix Inversion Lemma to the first term
of the right hand (20), the following expression is given.

Jk+1 = ρ−1
k −ρ−1

k Q̄kρ−1
k + ψk

+γk+1HT
i R−1

k+1Hi (25)

where ψk = ρ−1
k Q̄k(ρk + Q̄k)−1Q̄kρ−1

k

If the process noise is extremely small and can be ne-
glected, then above result is same to S.Huang2) especially
for a case of a stationary robot observing a landmark at
some point with an initial state covariance P0(∈ R

3+2m) >
0. Based on their results, when process noise covariance
Qk is so small and can be neglected, then EKF update and
its convergence holds the following criteria.

Jk = P−1
0 + γk+1HT

i R−1
k+1Hi (26)

J−1
n→∞ ≤

[
P0 P0HT

A A−T

A−1HAP0 A−1HAP0AHT
A A−T

]
(27)

Equation (27) generally defines that if the observations at
a point are made successively, in the limit the state co-
variance is converging to the given equation. The assump-
tion of Qk is small and can be ignored has made S.Huang

et.al results a general conclusion about EKF-SLAM con-
vergence properties. However, whenever the process noise
covariance has to be considered, the process noise has a
significant effect to the overall estimation. Even more, the
process noise also defines the system state error covari-
ance boundedness. We now move to investigate further
about the contribution of these equations to a case of inter-
mittent measurements.

Based on Assumption 1 and Definition 1, it is understood
that Qk ≥ 0. Besides, FIM must satisfy Jk > 0 to ensure
that there exist a solution to EKF-SLAM. We denote at
time k, the process noise is represented by either one of the
following. Q̄k to express that it is the maximum process
noise covariance and Q

k
for the minimum process noise

covariance. These expression equivalently means that the
process noise are not normally distributed and has either
highest variance Q̄k or lowest variance Q

k
.

Lemma 1 Given P0,Qk,Rk > 0. If a measurement data is
missing in the interval of 1 < k < N(N > 0) time, then the
FIM lower bound and upper bound are shown as follows.

Jk+1 = ρ−1
k + ρ−1

k Q̄k(ρk + Q̄k)−1Q̄kρ−1
k

+γk+1HT
k R−1

k Hk (28)

J̄k+1 = ρ−1
k −ρ−1

k Q
k
ρ−1

k + γk+1HT
k R−1

k Hk (29)

Proof Equation (25) are applied to investigate the sta-
tistical bound of the state error covariance updates. Con-
vergence results from S.Huang et.al2) are also referred to
evaluate the update.

Based on (25), we obtained a maximum and minimum
value of FIM. Note that Jk > 0 must be satisfied at each
update to ensure at least a solution exist. Besides, from
S.Huang et.al2), if the process noise is too small such that
it can be neglected, then after recursive update, the estima-
tion converges to the initial state covariance P0. By mak-
ing Q̄k = 0 in (25), we obtained that ρk = P0(refer to 2)

for explicit derivation). By this fact, for P0 > 0 and when
Q̄k = 0, then we can conclude that (25) holds the following
property for n−times observations.

Jn→∞ = P0

This properties is preserved in all observations. We then
have the following expression.

Jk+1 > Jk > 0

Thus, the minimum FIM information can be given by the
following equation(by means that (25) achieved its mini-
mum information).

Jk+1 = ρ−1
k + ρ−1

k Q̄k(ρk + Q̄k)−1Q̄kρ−1
k (30)

The FIM upper bound J̄k+1 is given as

J̄k+1 = ρ−1
k −ρ−1

k Q
k
ρ−1

k (31)

Both (30) and (31) contributes the upper and lower infor-
mation bound for the EKF-SLAM with intermittent mea-
surements. �

Lemma 1 has described the FIM lower and upper bounds
when measurement data is not available. By determin-
ing the possible maximum or minimum of information ob-
tained during intermittent measurement, we are able to in-
fer the updated state error covariance condition. These re-
sults are more deterministic than previous findings which
helps designer to comprehend better information about
the system(see (10)−(12) for further details). It seems nor-
mal that if when measurement data is missing then FIM
acquired previous data to update its current information.



However, as we shown in above lemma, when measure-
ment data is unavailable, FIM does not refer back to its
previous data but is strictly bound to (28) or (29). Besides,
process noise covariance characteristics, the updated state
error covariance also depends on the following equation
which has been stated earlier in this paper.

Hi(Xk+1 − X̂−
k+1) = γk+1Ak+1(Lmk+1 −Rk+1)

For EKF-SLAM, for any given P0 > 0, the state error co-
variance Pk is converging to P0 after sufficient observations
if and only if Q̄k is so small and can be neglected2). Be-
sides, it has been guaranteed that when the robot is mov-
ing, the convergence results is shown by the addition of P0
and its associated process noise distribution.

Now we derive the statistical bound for the state error
covariance Pk whenever the measurement data is intermit-
tently unavailable at k + 1. A condition is also proposed
to ensure that the state error covariance is converging. We
show that if ρk+1 > Q̄k+1 and Q̄k is invertible, then the sta-
tistical bounds are exist. Even though the process noise
such as the wheel misalignment and slippage do not obey
normal distribution and is unknown, a designer is able to
obtain the robot kinematics with probabilistic method un-
der certain knowledge. If the process noise covariance is
enormously bigger than the initial state covariance, then
the prediction result in high uncertainties about the sys-
tem. Consequently, the estimation become inconsistent
and yield erroneous position estimations.

Lemma 2 Given ρk+1 ≥ 0. In EKF-SLAM, if no measure-
ment data is available during robot observations, then the
estimation is still possible if and only if ρk+1 > Q̄k+1 such
that if Q̄k+1 > P0, then the estimation is insufficient.

Proof The proof can be easily obtained by analyzing the
FIM. Referring to (18), when the stationary robot observes
it surroundings for the first time and then moves, we have
the following expression.

P−1
k = P−1

0 +HT
i R−1

k Hi

By previous results(2), if more observations are made by
the robot such that n → ∞, then Pn→∞ → P0. At the next
stage of k + 1, when the robot moves and due to slippage
and other disturbance, we obtain the following.

P−1
k+1 = (ρk + Q̄k)−1 +HT

i R−1
k+1Hi

where ρk is defined in (23). Based on above, if Q̄k > ρk
then it can be easily identified that the state error covari-
ance is not converging to P0. Instead, it converges to a
bigger value than P0 which depends to the process noise
covariance. The result become worst if process noise is
enormously bigger than ρk and if intermittent measure-
ment is occurred during observations, thus producing er-
roneous results about the state. If the process noise is keep
increasing or the robot lost capability to sense it motions,
then estimation is impossible in SLAM. �

Theorem 1 Assume that (24) is satisfied. Consider that
the initial state covariance P0 > 0 and Assumption 1 are
satisfied. If a measurement data is not arrived at any k,1 <
k < N time. Then if ρk+1 > Q̄k+1 is achieved, the state
error covariance Pk+1 is bounded as the following.

Pk+1 ≤ Pk+1 ≤ P̄k+1 (32)

such that

Pk+1 = ρk −Q
k
(ρk +Q

k
+Q

k
ρ−1Q

k
)−1Q

k
(33)

P̄k+1 = ρk +(Q̄−1
k −ρ−1

k )−1 (34)

In other words, the upper bound of state error covariance
update P̄k+1 is shown by J−1

k+1, while the lower bound of

state error covariance update Pk+1 is presented by J̄−1
k+1.

In a case of a stationary robot observing landmarks, if a
measurement data is intermittently missing at 1 < k < N,
and process noise Qk is very small, then the upper bound
is restricted and bounded to the amount of previous state
error covariance Pk.

Proof The proof is divided into two parts comprising
about the upper and lower bounds of the state error co-
variance.

1. (Lower bound for state error covariance)
We attempt to find the maximum value of J̄k for a
given initial state covariance P0 > 0, transition ma-
trix fr and measurement matrix Hk. Assume that
Assumption 1 is satisfied. In other words,

argmin(Pk+1)
P0,Qk,Rk, fr,Hk

:= {J̄k+1|∀P0,Qk, fr > 0}

From Matrix Inversion Lemma, FIM lower bound
J̄k+1 has its maximum information if the equation be-
come as following.

J̄k+1 = ρ−1
k + ρ−1

k Q
k
(ρk +Q

k
)−1Q

k
ρ−1

k

+γk+1HT
k R−1

k Hk

Now we can determine the state error covariance as
follows. If the measurement data is missing at k +
1-time, then after some arrangement and by Matrix
Inversion Lemma, we finally obtained that the state
error covariance yield the following expression.

Pk+1 = [ρ−1
k + ρ−1

k Q
k
(ρk +Q

k
)−1Q

k
ρ−1

k ]−1

= ρk −Q
k
(ρk +Q

k
+Q

k
ρ−1Q

k
)−1Q

k

The second term on the right hand side of above equa-
tion can be easily evaluated to ensure Pk+1 always
yields a positive definite.

2. (Upper bound for state error covariance)
The lower bound of FIM that generates the upper
bound of state error covariance is given by

argmax(P̄k+1)
P0,Q̄k,Rk, fr,Hk

:= {Jk+1|∀P0,Qk, fr > 0}

With reference to (25), we suggest that the following
equation describe the lower bound of FIM J k+1.

Jk+1 = ρ−1
k −ρ−1

k Q̄kρ−1
k + γk+1HT

k R−1
k Hk

If measurement data is not arrived at k + 1, then

Jk+1 = ρ−1
k −ρ−1

k Q̄kρ−1
k

Determining the upper state error covariance appar-
ently give us the following result.

P̄k+1 = [ρ−1
k −ρ−1

k Q̄kρ−1
k ]−1

= ρk +(Q̄−1
k −ρ−1

k )−1

q̄−1
k is a pseudo inverse of the process noise such that

there are very small landmarks process noise induced
in the system. The inverse term of the right hand
equation yield a positive definite matrix as the con-
dition of Pk,Qk > 0 is satisfied in each update. For a
case of extremely big state error covariance and very
small process error especially for a case of stationary
robot, if measurement data is missing then the sta-
tistical bound of state error covariance is shown only
by the sum of previous state error covariance Pk and
process error Qk.



Hence, the upper P̄k+1 and lower state error covariance
Pk+1 are now explicitly indicated by

P̄k+1 = J−1
k+1

Pk+1 = J̄−1
k+1 �

As shown in above Theorem 1, we understand that the
state error covariance update is significantly being affected
by the previous state error covariance and process noise
covariance such that if both terms are big, then the uncer-
tainties is increasing. This results is supported by previous
results9, 10, 11) that gives a statistical determination about
the system behavior in intermittent measurement. In ad-
dition, even if measurement data is available, P0 and Qk
always influencing the estimation performance. As been
explained before, EKF is converging P0

2) which determine
system efficiency. Furthermore, this fact can be obtained
by analyzing (21) without γ existence which show the nor-
mal EKF update under FIM representation. We can find
that state covariance update is proportional to initial state
covariance and process noise.

Further realize that, designer must consider the system
design especially regarding the process noise covariance
and initial state covariance to satisfy whether Pk > Qk.
Comparing above results with the normal EKF without in-
termittent measurement data lost, measurement data has
an important role to give a sufficient information to the
system estimation. Moreover, the FIM lower bound is now
explicitly shown when there are no arrival of measurement
data at 1 < k < N.

Considering the best performance update for each obser-
vation in which the measurement data is available at all
time, the state error covariance J̄k+1 should perform con-
sistently as analyzed by S.Huang et.al2). In each case of
stationary robot or moving robot, the state error covari-
ance must reflect the same as analyzed by them. Besides,
the convergence properties can be easily clarify to illus-
trate the same as normal EKF for a case of very small pro-
cess noise. See (30) when the process noise Qk → 0, then
the state error covariance is approximating Pk. The esti-
mation indeed has achieved a desired performance level
only when robot gained more information from its obser-
vations. As a matter of fact, if more measurements are
made for any instant time k, then the FIM becomes bigger
and can intensively improved the estimation. Besides, we
proved that the above fact coherently guaranteeing EKF
convergence as claimed by S.Huang et.al2).

Interestingly, if the updated state error covariance shows
the output which same to the lower bound, then the EKF
is now very optimistic about its estimation. The RMSE re-
sult is important to evaluate whether this is acceptable or
else as such condition is merely the case in real SLAM
application. This results is also coherent with S.Kluge
et.al11) in which he claimed that the convergence is pre-
served whenever the initial state covariance and both pro-
cess and measurement noises are small. If process noise
and the initial state covariance is very big, from (33)-(34)
it is understood that the updated state covariance becomes
unintendedly big. Hence result in unbounded estimation
about the states.

Different than previous literatures, it can be observed
from these results that the process noise act as an important
feature that significantly affect the estimation which also
proved S.Kluge et.al result11). Proposition 1 has explained
the other variables effects to the system. However, is this
characteristic remain steady even if the measurement data
are lost longer? Can we guarantee the estimation to con-
verge in a case where measurement data are not arrived for
some period of time? Moreover, as each update consists of
an added noises, then in a condition where measurement

data are lost longer, the state error covariance can result in
erroneous estimation. In other word, the uncertainties in-
crease and substantially lead to unstable system behavior.
We can summarized this effect by the following theorem.

Theorem 2 The updated state error covariance is in-
creasing or decreasing proportionally to the amount of
time whenever the measurement data is not available such
that it is increasing by

P̄k+n = ρk +nεk (35)

where εk = (Q̄−1
k −ρ−1

k )−1 or it is decreasing by

Pk+n = ρk −nε̄k (36)

where ε̄k = Qk(ρk +Qk +Qkρ−1Qk)−1Qk.

Proof The upper bound of the updated state error covari-
ance if a measurement data is lost at k is given by

P̄k+1 = ρk +(Q̄−1
k −ρ−1

k )−1

= ρk + εk

P̄k+2 = ρk + εk +[(Q̄−1
k −ρ−1

k ]−1

≤ ρk + 2εk

The updated state error covariance will increase unbound-
edly if there are no arrival of measurement data in longer
time such that if the measurement data is not available for
n−times, then

P̄k+n = ρk +nεk

Similar derivation can be obtained for the second case
where the updated state error covariance yield the follow-
ing equation.
Pk+n = ρk −nε̄k �

Hence, it can be summarized that recursive update without
the existence of measurement data can contribute to the
unreliable estimation especially when it is unavailable for
some period of time.

4 Simulation Results
The above analysis are further being examine in a speci-

fied simulation case. Table 1 shows the simulation param-
eters which includes the process and measurement noises
with an appropriate dimension. We assume that the land-
marks are stationary and consists of point landmarks. We
assign some points at 100[s], 500[s] and 800[s] which
do not receive any measurements data for a certain time.
There are 30[s] measurement data lost after 100[s], and
each 1[s] and 10[s] measurement lost for each after 500[s]
and 800[s] observations respectively.

Table 1: Simulation Parameters

Sampling Time, T 0.1[s]
Process noise,Q 1×10−6

Observation noise,
Rθi

,Rdistancei

Rθi = 0.002,Rdistancei = 0.02

Robot Initial
Covariance Pvv 1×10−2

Landmarks Initial
Covariance Pmm 100

Fig.3 shows the constructed map by both normal EKF
and a case of EKF with intermittent measurements. As ex-
pected, it is observable that for the case of EKF with inter-
mittent measurement, the estimation become inconsistent
whenever measurement data is not arrived. A big error is
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Fig. 4: Trace of the associated state error covariance be-
tween EKF-EKF with Intermittent Measurement

perceived in the respective update after no measurement
data arrived at above specified time. We observed that af-
ter 100[s] where the robot lost about 30[s] regarding its
measurement data, the estimation is diverging and conse-
quently makes the robot path erroneous. This is the biggest
implications compared to other specified time which lead
to inconsistent estimation for both robot and landmarks es-
timations. In addition, the result also agree with Proposi-
tion 1 stated in previous section.

Considering about the uncertainties, the associated state
error covariances are shown in Fig.4 to demonstrate the
robot and landmarks covariances. Based on probabilistic
SLAM, if the state error covariance is smaller, then the es-
timation is improved. Surprisingly and unexpectedly, the
EKF with intermittent measurement state error covariance
surpassed the normal EKF state error covariance without
intermittent measurement. It is noticeable that the state
error covariance almost reaching but do not exceeds the
lower bound as determined previously in Theorem 1 espe-
cially about the robot state estimation. These characteris-
tics are shown in Fig.5 for each 100[s], 500[s] and 800[s]
measurement data lost. Fig.5 supports both Theorem 1 and
Theorem 2 where we clearly understand the results when
measurement data is not arrived for 1[s] and more than
1[s]. Based on Fig.5, we observed that between robot and
landmarks state error covariances, robot has bigger upper
and lower bounds. This is actually due to landmarks has
no process noise and therefore exhibit less uncertainties
than the robot has. However, this result contradict with the
preceding result in Fig.3. Based on Fig.3, the robot state
error covariance for EKF with intermittent measurement
should be increasing and bigger than the normal EKF. We
expect that this is probably due to EKF affirms that it has
received a sufficient amount of information when mea-
surement data is unavailable. This is shown by the lower
bound of state error covariance as proposed by (38). Or
in other words, the updated state error covariance refer to
the previous state error covariance with some bounded ad-
dition of uncertainties(refer to (25)). These results also
denotes explicitly that EKF become more optimistic about
its estimation.
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Fig. 5: Upper and lower bound of the estimation for EKF
with Intermittent Measurement when measurement data is
lost at 100[s], 500[s] and 800[s] for 30[s], 1[s] and 10[s]
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Fig. 6: Performance between EKF and EKF with Inter-
mittent Measurement when measurement data is lost at
100[s], 500[s] and 800[s] for 30[s], 1[s] and 10[s]

Fig.6 provides a clearer descriptions about this fact.
Most of the RMSE in EKF with intermittent measurement
consequently become bigger since there was a hole in the
observations data(see at 100[s], 500[s] and 800[s] when-
ever measurement data is missing). Despite of the results
in Figs.4-5, this figure shows the true behavior of estima-
tion. In fact, even if the initial state covariance, process
and measurement noises are small, estimation can diverge
and further attention is needed in such case. Observe that
in this analysis, we obtain PMSE > Pestimate. Consequently,
this condition proves that EKF with intermittent measure-
ment is optimistic. The updated state error covariance and
the constructed map are insufficient to describe the esti-
mation. The RMSE evaluation or any additional tools are
necessitate to view the actual estimation performance.

The NEES test(Normalized Estimation Error Squared) is
apply to certify the results for both cases. We include the
evaluation in Fig.7. The results absolutely pictures that
EKF with intermittent measurement has exhibit inconsis-
tency. The estimation errors are growing especially when
measurement data is not arrived. Hence, we conclude that,
in a case of EKF with intermittent measurement, designer
must carefully examine the RMSE performance to assess
its performance. In an actual system and environment and
due to sensors limitation, it is hard to judge each obser-
vation whether it encompasses appropriate packet infor-
mation or else. Relying only to the state error covariance
is insufficient as already been enclosed in above results.
Fig.8 shows the effect of bigger initial state covariance,
process and measurement noises. As expected, the esti-
mation is erroneous than normal EKF.

Nevertheless, we guarantee that the EKF with intermit-
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Fig. 8: Constructed map with bigger process noise, mea-
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tent measurement satisfies the aforementioned upper and
lower bounds despite of its optimistic behavior. The un-
certainties never exceeds these bounds when measurement
data is not available. Furthermore, based on the analysis
and simulation results, the upper and lower bounds are de-
termine explicitly using the FIM approach. Remark that
for bigger process and measurement noise with bigger ini-
tial state covariance, the results may exhibit erroneous es-
timation. This condition must be considered in pursue to
design a system that able to achieve a desired outcome.

5 Conclusion
This paper presented an analysis about EKF upper and

lower bounds for the whole robot observations by utiliz-
ing the information obtained by FIM. We showed that by
using FIM, it was possible to determine EKF upper and
lower bounds through Theorem 1 and Theorem 2. Based
on these theorems, we understand that the uncertainties
were increasing if measurement data was not available.
Besides, the uncertainties were bounded and could be pre-
sented explicitly via FIM. Our numerical results were also
supports our claims which indicated that the updated state
error covariance never exceeds our proposed upper and
lower bounds. There were also some certain conditions
to be considered in order to affirm consistent results with
our analysis. Based on the analysis, we provided a suffi-
cient information about the updates behavior whenever a
measurement data was not available. We also realized that
in a case when measurement data was unavailable, even
though the state error covariance was small, the estimation
could show unexpected behavior. We left for the evalua-
tion for a real application in future research development.
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