
第 51 回自動制御連合講演会
2008 年 11 月 22 日，11 月 23 日 山形大学工学部
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Abstract– This paper addresses improved transparency of teleoperation system by using an impedance
control based a new proposed force-reflection(FR) algorithm, where an exerted force by the human operator
and a reflecting force from the contact environment are transferred over communication lines with time-
varying delays. The input-to-output stability (IOS) small gain approach is used to show the overall FR
teleoperation system to be input-to-state stable (ISS). Several experimental results show the effectiveness of
our proposed algorithm.
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1 Introduction

Teleoperation systems allow a person to extend
his/her intelligence and manipulation capability to
remove and/or hazardous environments through co-
ordinated control of two robotic arms, i.e., a master
hand controller is used by human operator, and a slave
robot that manipulates the environment. Therefore
teleoperation system is applied in many fields such
as: outer space, undersea, nuclear plants, surgical op-
erations, vehicle steering, etc.1).

In bilateral teleoperation, the master and slave
robots are coupled via communication lines, where
the position and/or force information are transferred.
Communication delay is incurred in transmission of
data between the master and slave. It is well known
that the delay in a closed loop system may destabilize
and deteriorate transparency of the system.

While accurate tracking is essential for the skillful
control of tasks, it is not enough to achieve really good
performance on its own since position is not only re-
lationship that exists between both robots. In fact
at the moment that the slave robot starts its interac-
tion with the environment, reaction force appears and
arises. Consequently, the feedback of the force turns
out to be extremely useful and lead to so-called force
reflection in master-slave system, which does not only
try to achieve good tracking during unconstrained mo-
tion, but also to convey precise information of the
forces that appear between the slave robot and envi-
ronment, therefore the operator can actually feel them
on the master robot. This system is called perfect
transparency if the operator at master side can feel
and exert exactly the same forces as if he/she were
directly working on the remove environment with the
real tool at the end-effector of slave robot 2) 3).

In many surveys concerning the teleoperation con-
trol systems, impedance control was introduced and
improved, such as in references 4)−7). The impedance
control based computed torque approach with con-
trol objective is to make mimic a passive mechanical
tool with a force-reflecting ability was used in refer-
ence 5), in this research the slave is controlled to fol-
low the commanded trajectory from master and to
absorb interaction forces between slave and the envi-
ronment. The research 6) used the impedance control
based inverse dynamic which was introduced in refer-
ence 4) to apply to compare some controllers in a 2
DOF master-slave system, and a new force reflecting

teleoperation methodology with adaptive impedance
control was used in research 7) to reduce operator en-
ergy requirements without sacrificing stability. In ad-
dition, to improve the transparency of bilateral with
communication delay, a force-reflection (FR) scheme
was addressed in reference 8), and the control law was
used to be PD control.

In research 8), the force-reflection was introduced,
where the environment force reflected on the master
side can be altered depending on the force applied
by the human operator and the alteration is not felt
by the human, then this FR algorithm is not effec-
tive transparency. On the other hand, since only the
force reflected from the environment, the control sys-
tem of research 8) becomes three channels commu-
nication lines teleoperation system. The problem of
stable of FR teleoperation with time-varying commu-
nication delay was addressed.

In this parer, we address improved transparency of
teleoperation system by using the impedance control
based on researches 4) and 6) with a new proposal of
system inputs, which relate to a new proposed FR
algorithm of the bilateral teleoperation with time-
varying delays in the communication lines. In the
proposal, beside the reflecting force from slave side,
the force that exerted by the human is also transferred
to slave, then they make the system be four communi-
cation channels teleoperation. In our sense, feeling of
human operator is also important, with the proposed
FR algorithm, the human can feel the alteration of the
force from end-effector of slave at the environment in
contact tasks, therefore the transparency of teleoper-
ation will be improved. In this paper, the input-to-
output stability (IOS) small gain approach 8) 9) 10) is
used to show the overall FR teleoperation system in
input-to-state stable (ISS), and several experimental
results show the effectiveness of our proposed algo-
rithm.

2 Problem Formulation
2.1 Dynamics of Teleoperation System

In this paper, we consider a pair of robotic system
couple via communication lines with time-varying de-
lays. Assuming absence of fiction, other disturbances
and gravity term, the master and slave dynamics with
n− DOF are described as:j

Mm(qm)q̈m + Cm(qm, q̇m)q̇m = τm + JT
mFop

Ms(qs)q̈s + Cs(qs, q̇s)q̇s = τs − JT
s Fe

(1)
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Where the subscript “m” and “s” denote the mas-
ter and slave indexes, respectively, qm, qs ∈ Rn×1 are
the joint angle vectors, q̇m, q̇s ∈ Rn×1 are the joint ve-
locity vectors, q̈m, q̈s ∈ Rn×1 are the joint acceleration
vectors, τm, τs ∈ Rn×1 are the input torque vectors,
Fop ∈ Rn×1 is the operational force vector, Fe ∈ Rn×1

is the environmental force vector, Mm, Ms ∈ Rn×n

are the symmetric and positive definite inertial ma-
trices, Cmq̇m, Csq̇s ∈ Rn×1 are the centripetal and
Coriolis torque vectors, and Jm, Js ∈ Rn×n are Jaco-
bian matrices.

Consider that position encoders measure manipula-
tor coordinate qi Cartesian coordinate must be relate
to the former, and also their derivatives through the
above Jacobian matrix Ji(qi) with i = m, s as:

zi = hi(qi(t)) ⇒ żi = Ji(qi)q̇i (2)

Following the motion of the master, the slave ma-
nipulator interacts with the environment. Here the
environment is assumed to be a dynamical system de-
scribed by the equations below:j

ẋe = Fenv(xe, zs, żs, t)
Fe = Genv(xe, zs, żs, t)

(3)

where xe ∈ Rz is a state of environment, we assume
that Fenv(xe, zs, żs, t) is measurable in t, locally Lip-
schitz in the xe, zs, żs and essentially bounded on any
compact set of xe, zs, żs uniformly in t ≥ 0. Addition-
ally suppose:

|Genv(xe, zs, żs, t)| ≤ a(|xe| + |zs| + |żs| + |b|) (4)

hold for all t ≥ 0, where a, b ≥ 0. The following as-
sumption is imposed on the environmental dynamics:

Assumption 1. There exists a locally Lipschitz stor-
age function Ve : Rz → R, α1e, α2e ∈ K∞, and α3e >
0 such that: α1e(|xe|) ≤ Ve(xe) ≤ α2e(|xe|) holds for
all xe ∈ Rz, and the time derivative of Ve along tra-
jectories of (3) satisfies: V̇e(t) ≤ −α3e|xe|2 +FT

e se(t)
for almost all t ≥ 0, where:

se(t) = żs(t) − z∗
2(t) + Λenv(zs(t) − z∗

1(t)) (5)

where Λenv = ΛT
env ∈ Rn×n, and z∗1 , z∗2 : R → Rn are

some continuous uniformly bounded functions.

2.2 Control Objectives
We would like to design the control input τm and τs

to achieve a task-space synchronization and the trans-
parency improvement with proposed force reflection
algorithm of teleoperation. Let us define the position
tracking errors of the end-effector as:j

em(t) = zm(t) − zs(t − T (t))
es(t) = zs(t) − zm(t − T (t))

where zm, zs ∈ Rn×1 are the end-effector position
vectors. Then the control objectives in this paper as:

1. The synchronization is achieved as:
ei(t), ėi → 0 as t → ∞, i = m, s

2. The transparency is achieved with z̈i(t) =
żi(t) = 0, i = m, s as:

Fop = Fe

2.3 Impedance Controller
A precise knowledge of values of the dynamic pa-

rameters of the system allows the implementation
of an inverse dynamics algorithm as impedance con-
troller. Here, following the proposal in research 6),
the torque given by the motors can be split into two
terms, the first arising from the teleoperation τtel, and
the second from the impedance control τinv, then the
torque inputs of the system as:

τi = τinv i
+ τteli

(6)

where the second term is defined as: τteli = JT
i Fteli

(i = m, s). If we call Hi and Bi to be the mass and
damping and they are assumed positive definite di-
agonal matrices, and zi is a vector containing the
Cartesian coordinates as following (2). Fextm/s are
the forces exert on each robot which include reflec-
tion force information in, and Ftelm/s are the forces
via teleoperation. Applying approach in research 4),
the target relationship between the movement of each
robot and the force that act on it is expressed as:n

Hmz̈m + Bmżm = Fextm + Ftelm
Hsz̈s + Bsżs = Ftels + Fexts

(7)

Concerning (2) we get the further differentiation:
z̈i = Ji(qi)q̈i(t) + J̇(qi)q̇i (8)

Substituting (8) and (2) in to (7) and operating,
we can calculate the acceleration of system as follows:8<

:
q̈m = H−1

m J−1
m [Fextm + Ftelm − BmJmq̇m]

−J−1
m J̇mq̇m

q̈s = H−1
s J−1

s [Fexts + Ftels − BsJsq̇s] − J−1
s J̇sq̇s

(9)
Here for simplicity, we assume that:

Assumption 2. The Jacobian (Jm, Js) are invert-
ible, i.e. they are nonsingular matrices at all the time
in operation. They are also called pseudoinverse ma-
trices.

Substituting (9) and (6) in to (1) and enclosing
above assumption, we receive:8>>>>><

>>>>>:

τinvm =
MmH−1

m J−1
m [Fextm + Ftelm] − MmH−1

m Bmq̇m

−MmJ−1
m J̇mq̇m + Cmq̇m − (JT

mFtelm + JT
mFop)

τinvs =
MsH

−1
s J−1

s [Fexts + Ftels] − MsH
−1
s Bsq̇s

−MsJ
−1
s J̇sq̇s + Csq̇s − (JT

s Ftels − JT
mFe)

(10)

We receive the master slave robot dynamics with
impedance controller by substituting (10) into (1) as:8><

>:
Mmq̈m + Cmq̇m = MmH−1

m J−1
m [Fextm + Ftelm]

−MmH−1
m Bmq̇m − MmJ−1

m J̇mq̇m + Cmq̇m

Msq̈s + Csq̇s = MsH
−1
s J−1

s [Fexts + Ftels]
−MsH

−1
s Bsq̇s − MsJ

−1
s J̇sq̇s + Csq̇s

(11)

From (11) with noticing (2) and (8) we receive the
task space dynamics of the teleoperation system as:n

Hmz̈m + Bmżm = Fextm + Ftelm
Hsz̈s + Bsżs = Ftels + Fexts

(12)

In the impedance controller, we propose the ex-
erted forces of each robot at both sides of the system,
in which, the reflecting forces are also addressed:j

Fextm(t) = Fop(t) − F̂e(t − Ts(t))
Fexts(t) = F̂op(t − Tm(t)) − Fe(t)

(13)

where F̂op(t−Tm(t))/F̂e(t−Ts(t)) are reflection forces
from master/slave sides of teleoperation.

We assume Km, Ks ∈ Rn×n to be positive definite
diagonal gain matrices. The controller of the torque
arises from teleoperation is proposed as:j

Ftelm(t) = Km[zs(t − Ts(t)) − zm(t)]
Ftels(t) = Ks[zm(t − Tm(t)) − zs(t)]

(14)

where Tm(t) and Ts(t) are time varying delays in
the communication lines. Fig.1 shows a block di-
agram of the control system with impedance based
force-reflection teleoperation, Fig.2 is a block of mas-
ter/slave robot dynamics with impedance controller.
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2.4 Communication Delay
Let Ti : R → R+, i ∈ m, s be time-dependent time-

delay in the forward (i = m) and backward(i = s)
communication channels, respectively. The positions
and velocities of the master and slave are transmitted
to the each side with communication delays Tm/s(·),
then the following signals

ẑm(t) = zm(t − Tm(t)); ˆ̇zm(t) = żm(t − Tm(t))

ẑs(t) = zs(t − Ts(t)); ˆ̇zs(t) = żs(t − Ts(t)) (15)

are available for the controller on both sides of tele-
operation.

On the other hand, a contact force due to the envi-
ronment is measured on the slave side and transmitted
back to the master, and similarly, the force exerted on
the master manipulator also is measured and trans-
mitted forward to the slave side, with communication
delay Ts/m(·), i.e.

F̃e(t) = F̂e(t − Ts(t)); F̃op(t) = F̂op(t − Tm(t)) (16)

Both Tm/s(t) are assumed to be time-varying and
possibly unbounded. More precisely, the assumption
imposed on Tm/s(·) is given below:
Assumption 3. The communication delay Ti(·) :
R → R+, (i = m, s) satisfy the following properties:
1. Ti(t2) − Ti(t1) ≤ t2 − t1 for any t2 ≥ t1;
2. −Υ(t2− t1) ≤ Ti(t2)−Ti(t1) for some any Υ ≥ 0

and for any t2 ≥ t1
3. t − Ti(t) → +∞ as t → +∞

3 Force-Reflection Scheme
In this section, we will consider the FR teleoper-

ation system with communication delay as a system
of functional-differential equations (FDE). A state of
overall teleoperation system at time t ∈ R can be
choosen as follows:

xt = (zT
m, żT

m, zT
s , żT

s , eT
m, ėT

m, eT
s , ėT

s )T (17)

The research8) introduced a new FR algorithm that
used reflecting force which transfers from slave side to
master or operator side. In this strategy, to avoid the
excessively force pushing against the human opera-
tor, the saturation function of FR was used. Note
that, since the algorithm proposed changes the FR
only when the human operator does not push against
the environmental force, this alteration is not felt by
the human, then the transparency of the teleopera-
tion system is deteriorated. However, it prevents the
teleoperator system from going into unstable mode.
But in our sense, feeling of human operator is impor-
tant, it makes the human can feel the alteration of the
force exert on the environment by the FR from slave
side. It supports to the human to apply an appropri-
ate force in the real task at teleoperation. Therefore,
we propose using one more communication channel to
transfer the force of operator to slave side, then some
better results can be obtained in comparison with the
early research 8). The output of Master+operator and
Slave+environment interconnection are defined as:

ym = P̄1Fop + P̄2em + P̄3ėm

ys = K̄1Fe + K̄2es + K̄3ės (18)

where em = zm − ẑs and es = zs − ẑm are the position
errors, ėm = żm− ˆ̇zs and ės = żs− ˆ̇zm are the velocity
errors in the slave and master sides; K̄1 = K̄T

1 ≥
0, K̄2 = K̄T

2 ≥ 0, K̄3 = K̄T
3 ≥ 0 and P̄1 = P̄T

1 ≥
0, P̄2 = P̄T

2 ≥ 0, P̄3 = P̄T
3 ≥ 0 are the gain matrices.

We define the FR signal of both sides as follows:
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Fig. 2: The master and slave robot dynamics with
impedance controller

F̂e(t) = Kfbys(t); F̂op(t) = Pfwym(t) (19)

where Kfb ≥ 0 and Pfb ≥ 0 are FR gains, and the sig-
nal F̂e(t) is then transmitted to the master side, and
F̂op(t) is then transmitted to slave side with commu-
nication delays Ts(t) and Tm(t).

Concerning (18) and (19), the general formulas of
FR signals are given as:

F̂e(t) = Kfb(K̄1Fe + K̄2es + K̄3ės),

F̂op(t) = Pfw(P̄1Fop + P̄2em + P̄3ėm) (20)

The block of force reflection scheme is in Fig.1.
4 Stability Analysis

This section deals with stability of the overall tele-
operation system that includes master and slave sub-
systems, we defined a state of the system similarly
to (17). First, see approach in research 8), we con-
sider the master subsystem in (1) following the below
Lemma

Lemma 1. The close-loop master subsystem with
state xM = (zT

m, żT
m)T , input uM = (Fop − F̃e)T and

output yM = (zT
m, żT

m)T is input-to-state stable (ISS),
and also is input-to-output stable (IOS)
Proof. Consider ISS-Lyapunov function candidate:
Vm = 1

2ξT
mHmξm, where ξs is defined as: ξm =

żm − σ2 + Λm(zm − σ1). We can easily check that
αm(|xM |) ≤ Vm ≤ ᾱm(|xM |) for some αm, ᾱm ∈ K∞.
The time derivative of Vm along trajectories of the
system is:

V̇m = ξT
mHmξ̇m (21)

We consider the FR stabilization algorithm where
the velocity measurements are replaced by the esti-
mates obtained using the so-called “dirty derivative”
filters, which was also introduced in reference 8) for
the system transparency improvement as follows:j

σ̇1 = σ2 − Λm(zm − σ1)
σ̇2 = H−1

m [−Bmσ̇1 − Km(zm − ẑs)]
(22)

We have: ξ̇s = z̈m − σ̇2 + Λm(żm − σ̇1)
Substituting z̈m from (12) into ξ̇ and then put them

in (21) with noticing the formulas of Ftelm and Fextm,
we get:

V̇m = − ξT
mHm[H−1

m −Bm(żm − σ2 + Λm(zm − σ1))

+ Fextm + Λmξm]

= − ξT
m(Bm + HmΛm)ξm + ξT

m(Fop − F̃e) (23)
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We use the Young’s quadratic inequality with
|aT b| ≤ (ε/2)|a|2+(1/2ε)|b|2 holds for all ε > 0, there-
fore we can obtain the following estimate:

ξT
m(Fop − F̃e) ≤

λmin(Λm)

4
|ξm|2 +

1

λmin(Λm)
|Fop − F̃e|2 (24)

We get:
V̇m ≤− ξT

m(Bm + HmΛm)ξm +
λmin(Λm)

4
|ξm|2

+
1

λmin(Λm)
|Fop − F̃e|2 (25)

Now, let γΛ ∈ K be defined as: γΛ = λmin(Λm)/4
then we can choose Km = KT

m > 0 satisfying
γΛ(Λm) ≤ 4[Bm + HmKm].

Applying the results of Sontag and Wang (1995) 11)

(see Appendix) and in reference 10), the subsystem is
input-to-state stable with the state (zT

m, żT
m)T .

Now, we consider the slave-environment intercon-
nection with slave subsystem.

Lemma 2. State of the closed-loop slave subsys-
tem is assumed as: xS = (z̃T

s , ξT
s , xT

e )T , and input:
uS = ((z∗1)T , (z∗2)T , ςT

1 , ςT
2 , zT

s , F̃T
op)

T . We suppose
the environment dynamics (3) satisfy Assumption 1.
Then there exits γΛ ∈ K such that if λmin(Ks) ≥
γΛ(‖Λs − Λenv‖), then the slave-environment inter-
connection is input-to-state stable.

Proof. To prove the Lemma, following the proposal
in research 8), we consider the ISS-Lyapunov function
candidate:

Vs =
1

2
ξT

s Hsξs +
1

2
kz z̃T

s z̃s + Ve (26)

where Ve is introduced in Assumption 1, kz > 0 is a
constant to be determined, z̃s = zs − ς1. And one can
easily check that Vs satisfies the inequality αs(|xS |) ≤
Vs ≤ ᾱs(|xS |) for some αs, ᾱs ∈ K∞. Calculating
the time derivative of Vs along the trajectories of the
system as:

V̇s = ξT
s Hsξ̇s + kzz̃

T
s

˙̃zs + V̇e (27)

Similar to the master subsystem, we set: ξs = (żs−
ς2)+ Λs(zs − ς1); ξ̇s = (z̈s − ς̇2)+ Λs(żs − ς̇1); and use
the “dirty-derivative” filter as follows:j

ς̇1 = ς2 − Λs(zs − ς1)
ς̇2 = H−1

s [−Bsς̇1 − Ks(zs − ẑm)]
(28)

Considering (12) to get z̈s and substituting (28) into
ξ̇s with noticing the formula of Ftels in (14), we re-
ceive:

ξ̇s = H−1
s [−Bs(żs − ς̇1) + Fexts] − Λsξs (29)

The fact that:
˙̃zs = −Λsz̃s + ξs + ς2 − ς̇1 (30)

and substituting (29) into (27) and concerning V̇e in
Assumption 1, the formula of Fexts in (13), we get:

V̇s ≤ −ξT
s (Bs + HsΛs)ξs − kz z̃T

s Λsz̃s − α3e|xe|2
+ F̃ T

opξs + F T
e (se − ξs) + kz z̃T

s ξs + kz z̃T
s (ς2 − ς̇1) (31)

Modifying the formula of ξs as follows:
ξs =(żs − ς2) + Λenv(zs − ς1) − (Λenv − Λs)(zs − ς1)

Seeing (5), we receive:

(se − ξs) = ς2 − z∗
2 + Λenv(ς1 − z∗

1)| {z }
Ω1

+ (Λenv − Λs)| {z }
Ω2

z̃s

(32)

Using the formulas: zs = z̃s+ς1, żs = ξs−Λsz̃s+ς2;
and noticing the inequality (4), we get:

|Fe| ≤ a(|xe|+ ‖ Λs + I ‖ |z̃s| + |ξs| + |ς1| + |ς2|) + b
(33)

Combining (32) and (33), we get the estimate:

|(se − ξs)
T Fe| ≤ a|xe||Ω1| + a ‖ Λs + I ‖ |z̃s||Ω1|

+ a|ξs||Ω1| + a(|ς1| + |ς2|)|Ω1| + b|Ω1|
+ a|xe| ‖ Ω2 ‖ |z̃s| + a ‖ Λs + I ‖‖ Ω2 ‖ |z̃s|2
+ a ‖ Ω2 ‖ |ξs||z̃s| + a ‖ Ω2 ‖ (|ς1| + |ς2|)|z̃s|
+ b ‖ Ω2 ‖ |z̃s| (34)

We use the fact that (ς2 − ς̇1) = Λs(zs − ς1), and
applying the Young’s quadratic inequality form, we
can obtain the following set of estimates:

F̃ T
opξs ≤ λmin(Λs)

4
|F̃op|2 +

1

λmin(Λs)
|ξs|2 (35)

kz z̃T
s ξs ≤ kz(

λmin(Λs)
4

|z̃s|2 +
1

λmin(Λs)
|ξs|2) (36)

kz z̃T
s Λs(zs − ς1) ≤

kzλmin(Λs)

4
|z̃s|2 +

kzΛ2
s

λmin(Λs)
|zs − ς1|2 (37)

a|xe||Ω1| ≤ α3e

4
|xe|2 + a2

α3e
|Ω1|2 (38)

a ‖ Λs + I ‖ |z̃s||Ω1| ≤
kzλmin(Λs)

4
|z̃s|2 +

a2‖Λs+I‖2

kzλmin(Λs)
|Ω1|2 (39)

a|ξs||Ω1| ≤ λmin(Ks)

4
|ξs|2 + a2

λmin(Ks)
|Ω1|2 (40)

a|xe| ‖ Ω2 ‖ |z̃s| ≤ α3e

4
|xe|2 + a2

α3e
‖ Ω2 ‖2 |z̃s|2 (41)

a ‖ Ω2 ‖ |ξs||z̃s| ≤‖ Ω2 ‖ (a2|ξs|2 +
1

4
|z̃s|2) (42)

a ‖ Ω2 ‖ (|ς1| + |ς2|)|z̃s| ≤
‖ Ω2 ‖ (a2(|ς1| + |ς2|)2 +

1

4
|z̃s|2) (43)

b ‖ Ω2 ‖ |z̃s| ≤‖ Ω2 ‖ (b2 +
1

4
|z̃s|2) (44)

Combining (35)-(44) and (31), (34), we get:

V̇s ≤ −ξT
s (Bs + HsΛs)ξs − kzz̃

T
s Λsz̃s − α3e

2
|xe|2

+
h 1 + kz

λmin(Λs)
+ a2 ‖ Ω2 ‖

i
|ξs|2

+
h`

a ‖ Λs ‖ +a +
3

4

´ ‖ Ω2 ‖ +
a2

α3e
‖ Ω2 ‖2

i
|z̃s|2

+
h a2

α3e
+

a2 ‖ Λs + I ‖2

kzλmin(Λs)
+

a2

λmin(Ks)

i
|Ω1|2

+
ˆ
a(|ς1| + |ς2|) + b

˜|Ω1|+ ‖ Ω2 ‖ ˆ
(a2(|ς1| + |ς2|)2

+ b2
˜
+

λmin(Λs)

4
|F̃op|2 +

kzΛ
2
s

λmin(Λs)
|zs − ς1|2 (45)

Now, let γ1Λ, γ2Λ ∈ K∞ be defined for each s ≥ 0
as follows:

γ1Λ(s) =

`
a ‖ Λs ‖ +a + (3/4)

´
s +

`
a2/α3e

´
s2

2λmin(Λs)

γ2Λ(s) =
s

λmin(Λs)
+ a2γ−1

1Λ (s)

and let consider the small gain γΛ = γ1Λ(s) ◦ γ2Λ(s) ∈
K∞. Choosing Ks = KT

s > 0, kz > 0 satisfying:
λmin(Ks) ≥ γ2Λ(kz) ≥ γΛ(‖ Λenv − Λs ‖) (46)

implies that:
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V̇s ≤ −ξT
s (Bs + HsΛs)ξs − kz z̃T

s Λsz̃s − α3e

2
|xe|2

+
h a2

α3e
+

a2 ‖ Λs + I ‖2

kzλmin(Λs)
+

a2

λmin(Ks)

i
|Ω1|2

+
ˆ
a(|ς1| + |ς2|) + b

˜|Ω1|+ ‖ Ω2 ‖ ˆ
(a2(|ς1| + |ς2|)2

+ b2
˜
+

λmin(Λs)

4
|F̃op|2 +

kzΛ
2
s

λmin(Λs)
|zs − ς1|2 (47)

Similar to the master subsystem, the results in re-
search 11) of Sontag and Wang were used (see Ap-
pendix), then the slave subsystem is input-to-state
stable with state (z̃T

s , ξT
s , xT

e )T .

Remark 1. We consider the output of master and
the input of slave subsystem with the formula of se,
which is the tracking set in the environment dynam-
ics. When se set to zero, then the function V̇e satisfies
the ISS property 11), the control objectives (tracking
performance and transparency) are achieved. In this
case, the inputs of slave subsystem (z∗1 , z∗2)T , (ς1, ς2)T

are both converged to (ẑm, ˆ̇zm)T , respectively, ones
also relate to the output of the master subsystem over
the communication delays. Therefore in the close-loop
teleoperation system, some outputs of master relate to
the inputs of slave subsystem.

Concerning the Lemma 1 and Lemma 2, the fol-
lowing theorem describes stability properties of the
close-loop system:

Theorem 1. Consider the force-reflecting teleoper-
ator system (1), (3), (13)-(14) with FR algorithm
(20). Suppose the environment dynamics satisfy the
Assumption 1, and the communication delays Tm/s(·)
satisfy Assumption 3, there exists γΛ(·) ∈ K such that
λmin(Ks) ≥ γΛ(‖ Λs − Λenv ‖) implies that: for the
FR algorithm (20), the overall teleoperation system is
input-to-state stable (ISS).

Proof. Now we can combine the above presented re-
sults and the consecutive application of the IOS
small gain theorem in research 8). Indeed, denote
by γ[uM→yM ](·) ∈ K the ISS gain of the closed-loop
master subsystem whose existence is guaranteed by
Lemma 1. And also, we let γ[uS→xS ](·) ∈ K be the
IOS gain of the closed-loop slave+environment sub-
system (3), (29), (30). Choose α∗(·) ∈ K∞ such that
the inequality:

α∗ ◦ γ[uS→xS ](·) ◦ γ[uM→yM ](·)(s) < s (48)

holds for all s > 0. Applying the IOS small gain
theorem, the overall teleoperation system is input-to-
state stable for any α ∈ N satisfying α(s) ≤ α∗ for
all s ≥ 0.

5 Evaluation by Control Experiment
In this section, we verify efficacy of the proposed FR

teleoperation. The experiments were carried out on a
pair of identical direct-drive planar 2 links revolute-
joint robots. The inertia matrices, the Coriolis matri-
ces are identified as:

Mi =

»
Mi1 + 2Ricos(qi2) Mi2 + Ricos(qi2)
Mi2 + Ricos(qi2) Mi2

–

Ci =

»
−Risin(qi2)q̇i2 −Risin(qi2)(q̇i1 + q̇i2)
Risin(qi2)q̇i1 0

–

where Mi1 = 0.366 kgm2, Mi2 = 0.0291 kgm2, Ri =
0.0227 kgm2; li1 = li2 = 0.2 m; with i = m, s. A

Environment 

Slave robot Master robot 

Fig. 3: Experimental setup

remove environment on the slave side is a hard alu-
minum wall and its surface is covered by rubber as
shown in Fig.3. We also receive the joint angle values
from encoders in each joint of robots and measure the
operational and the environment reflecting forces by
using the force sensors at the end-effectors of robots.
For implementation of the controllers and communi-
cation line, we use a dSPACE system (dSPACE Inc.)
All experiments have been done with the artificial
time varying communication delays as:

Tm(t) = 0.2sin(0.3t + 0.3) + 0.3 [s]

Ts(t) = 0.2sin(0.3t + 0.3) + 0.3 [s]
Fig.3 shows the experiment task, the slave here

is controlled to contact the surface of environment
at (x1, y1) in a line from initial position (x0, y0).
The initial joint angles of robots are chosen to satisfy
the Assumption 1, then we set q1 = 450; q2 = −900

and they are equivalent in task space with x0 =
0.2828 m; y0 = 0.0 m. The contact position is set
as: x1 = 0.2828 m, y1 = −0.15 m. The controller
parameters are selected as follows:

Hm =Hs =
h
2 0
0 2

i
, Bm = Bs =

h
10 0
0 10

i
;

Km =
h
8 0
0 8

i
, Ks =

h
50 0
0 50

i
and some gains of force reflection scheme are chosen:
P̄1 = 1.6, P̄2 = P̄3 = 0.3; K̄1 = 0.5, K̄2 = K̄3 =
0.3; Kfb = Kfb = 1.25.

Two kinds of experiment conditions are given as
follows:

1. The slave moves without any contact.
2. The slave moves in contact with environment.
Figs.4, 5 show the results of case 1, the end-effector

of slave robot is controlled by the master from position
(x0, y0), we see that the free movement of the slave
accurately track those of the master robot. Fig.6 of
this case shows the force of the human operator that
exerted on the master, and obviously, there was not
the force reflected from the environment. Figs.6, 7
show the results of case 2. In the Fig.7, while the
slave robot is pushing the surface of environment (10-
37[sec]), the human exerts an increasing force and the
reflecting force from environment is also increasing.
This force is transferred back to the master side to
track the master position (see (20)) and the human
also can feel the alteration of the force. The second
case also proved that: with the proposed FR scheme,
the teleoperation system can get better position track-
ing performance (see Fig.6), specially in the contact
time.
6 Conclusion

In this paper, we proposed an impedance control
based a new force reflection (FR) algorithm of the bi-
lateral teleoperation with time varying delays. This
proposal has improved the transparency of teleopera-
tion with the effectively tracking performance. Using
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Fig. 4: Position data in case 1
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Fig. 5: Force data in case 1
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Fig. 6: Position data in case 2
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Fig. 7: Force data in case 2

the input-to-output stability (IOS) small gain theo-
rem to show the overall FR teleoperation system in
input-to-state stable (ISS). Several experimental re-
sults showed the effectiveness of our proposed meth-
ods. In future works, we will improve this algorithm
with lower or varying damping without the deterio-
rate transparency of the teleoperation.
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Appendix

Consider the following general system:
ẋ = f(x, y) (49)

here f ∈ Rn×Rm → Rn is continuously differentiable
and satisfies f(0, 0) = 0.
Definition 1. The system (49) is (globally) input-
to-state stable (ISS) if there exist a KL-function β :
R≥0 × R≥0 → R and a K-function γ such that, for
each input u ∈ Lm

∞ and each ξ ∈ Rn, it hold that:
|x(t, ξ, u)| ≤ β(|ξ|, t) + γ(‖u‖) (50)

for each t ≥ 0.
Definition 2. A smooth function V : Rn → R>0 is
called ISS-Lyapunov function for system (49) if there
exits K∞-function α1, α2 and K-function α3 and χ,
such that:

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|) (51)

for any ξ ∈ Rn and
∂V

∂t
+

∂V

∂x
f(t, ξ, u) ≤ −α3(|ξ|) (52)

for any ξ ∈ Rn and any u ∈ Rm so that |ξ| ≥ χ(|u|)
Remark 2. A smooth function V is an ISS-Lyapunov
function for (49) if and only if there exits αi ∈
K∞ (1 ≤ i ≤ 4) such that (51) holds, and

∂V

∂t
+

∂V

∂x
f(t, ξ, u) ≤ −α3(|ξ|) + α4(|u|) (53)

This provides a “dissipation” type of characteriza-
tion for the ISS property. Clearly (53) implies (52).
Assume now that (52) holds with some α3 ∈ K and
χ ∈ K. Let α4(r) = max{0, α̂4(r)} where α̂4(r) =
max{(∂V/∂t + ∂V/∂x)f(t, ξ, u) + α3(χ(|u|)) : |u| ≤
r, ξ ≤ χ(r)}. Then α4 is continuous and α4(0) = 0,
and can assume that α4 is a K-function. Note then
that (53) is holds because α4(r) ≥ sup|u|=r(∂V/∂t +
∂V/∂x)f(t, ξ, u) + α3(|ξ|).
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