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Abstract: This paper deals with an estimate algorithm which considers optimal control input for dynamic target navi-
gation by using wireless sensor networks and distributed Kalman filter. We propose a novel sensor scheduling algorithm
based on a neighbor discovery algorithm for discrete-time linear time-invariant systems. Then we propose an estimate
algorithm by sharing predicted estimate values and analyze characteristic of this algorithm. Finally, experimental results
show effectiveness of the proposed method in sensor networked feedback systems.
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1. INTRODUCTION
Recently wireless sensor networks with the calculation

function have attracted more attention, and research of
such systems has increased [1, 2]. In these researches,
sensor nodes are connected wirelessly and some local es-
timates are merged into the common estimate by infor-
mation sharing. It is well known that sensor networks are
superior to a observation by a system with single sensor
in a fault tolerance, load reduction of operator, collection
and application of information etc. Moreover, sensor net-
works have been applied to control systems such as tar-
get tracking systems [3, 4] and also we can construct the
guidance control system via a sensor network for traf-
fic control systems, nano-medicines and evacuation guid-
ance. Meanwhile, it is difficult to put the whole system
together in sensor scheduling when the number of nodes
and structure of the system are changing dynamically [5].
Also, the sensor network might not be able to converge
the data of all sensors to a data fusion center because
the communications capacity of each sensor has limita-
tion and the system is composed by the large-scale sen-
sor group [6, 7]. Even if all data can be collected, it needs
a heavy computation load and communication energy to
find the optimal value from among a huge amount of data
at short time step. Thus each sensors requires a lot of
arithmetic capacity. However, sensor nodes are generally
powered and driven by batteries. It is important to utilize
the energy efficiently to achieve the energy saving and
prolong sensor nodes life. Therefore, to suppress com-
pared number of data and communication electric power,
we restrict the number of active sensors at each time step
and select a set of sensors for measurement, communi-
cation dynamically. In this paper, we consider such sen-
sor scheduling problem as the problem of giving optimal
control input by using distributed Kalman filter for the
guidance control system via a sensor network by using
sensors which are selected from among the sensor group
nearby plant.
Distributed Kalman Filter (DKF) in sensor networks

has been studied in[8-10]. In these papers, each sensor
node calculates the local estimate and an entire system
generates the common estimate by information exchange.
However, they deal with a sensor network system as a
measurement system. Thus, it is difficult to apply to the

guidance control that the plant receives arbitrary control
inputs. Meanwhile, the sensor scheduling problem cib-
suderubg the estimation error variance and communica-
tion energy for a feedback control system was proposed
in [11]. Each sensor has the communication and observa-
tion functions and the control input is applied to the plant
by selected sensors. However, the sensor scheduling is
carried out in the fusion center by comparing evaluation
function. That means, as the number of the sensor grows,
the necessary sensor’s range of radio communication for
scheduling increases. Thus we can not apply these previ-
ous methods to this problem directly.

In this paper, by using evaluation function [12] which
is influenced by sensor’s observation distance, we pro-
pose a novel sensor scheduling algorithm which is nearly
independent of the aggregate number of sensors in entire
network. First of all, we propose the neighbor discovery
algorithm that only compares data which is sent by sen-
sors in the neighborhood of the plant, and show the condi-
tion that the evaluation function reaches the upper bound
value. Then we construct the feedback control system for
dynamic target navigation by using the estimation algo-
rithm based on DKF along with this scheduling method.
Secondly, we show the proposal DKF’s estimation that
shares predicted estimate values improves estimate accu-
racy from the previous DKF’s estimation. Moreover, we
confirm that not all of sensors have to estimate at every
time step. Finally, the effectiveness of the proposal esti-
mation algorithm is verified by the experiments.

2. PROBLEM FORMULATION
2.1 Plant and Sensor Nodes

In this paper, we consider the feedback control sys-
tem via a sensor network for dynamic target tracking and
guidance in Fig.1 . The control objective is to navigate a
vehicle from a starting point to any destinations by using
multiple sensor information.
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Fig. 1 Sensor Network System
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The control objective can be described as following.
This system consists the plant and N sensor nodes i(i =
1, 2, . . . , N). We assume all sensor nodes can measure
the position of the vehicle with sensor noise. The process
dynamics of the plant is given by

xk+1 = Axk + Buk + wk (1)

where xk ∈ R
n , uk ∈ R

r , wk ∈ R
n are the state, the

control input and the process noise assumed to be zero
mean white Gaussian noise respectively. We assume that
the control input uk is given by the following equation
and applied from the single sensor node i to the plant. It
means the plant takes only one control input from some
sensors at each time step.
uk = Kx̂i

k|k (2)

where x̂i
k|k ∈ R

n is the estimate of the single sensor node
i and K is the feedback gain. The measurement equation
of the sensor node i are given by
yi

k = Ci
kxk + Di(xk)vi

k (3)

where yi
k ∈ R

qi , vi
k ∈ R

p are the measurement output
of a sensor node i, measurement noise assumed to be
zero mean white Gaussian noise respectively. Addition-
ally, Di(xk) ∈ R

m×p is the state dependent noise which
depends on distance between the sensor node i and plant.
Now we assume (1) and (3) satisfy following Assump-
tions 1-3.
Assumption 1:

E

{[
wk

vi
k

] [
wT

k viT
k

]}
=

[
W 0

0 V i

]
(4)

E
{
wkx

T
0

}
= E

{
vkx

T
0

}
= 0 (5)

where W , V i are the positive semidefinite and positive
definite covariance matrix of noises wk, vi

k respectively.
Assumption 2: The matrix pair(A,W

1

2 )is reachable.
Assumption 3: The matrix pair (C,A) is detectable,

where C = [C1T
k C2T

k . . . CN ′T
k ]T then N � is the total

number of active sensors (0<N �≤N ).
Assumption 4: Each sensor nodes can communicate

to others with a time delay less than a sampling time.
On the assumption that noted above, we deal the guidance
control problem of this sensor networked feedback sys-
tem as sensor scheduling problem. We define this prob-
lem as the following optimal problem.
Problem 1: We assume the plant and all sensor nodes

satisfy Assumption 1-4 , and each sensor i has predicted
estimate values: predicted state estimate x̂i

k|k−1, pre-
dicted estimate covariance P i

k|k−1>0. Then each sensor
i compute P i

k|k. By comparing P i
k|k, decide the optimal

state estimate x̂i
k+1|k that minimizes following estimation

error variance at the plant.
J =E{(xk+1 − x̂i

k+1|k)T (xk+1 − x̂i
k+1|k)}

= trace(Pk+1|k) (6)

To solve Problem 1, we discuss an estimation algorithm
of sensor node i by using Kalman filter. First, we define
the sensor nodes which sent the control input to the plant
at time step k − 1 as i

f
k−1 = i0k. It means one of con-

trol inputs from i
f
k−1(i ≤ N �) is adopted by the plant

at k − 1. Sensor nodes i0k compute predicted estimate

values P i0

k|k−1, x̂
i0

k|k−1 at time step k−1, then the estima-
tion algorithm is given by following equations which is
based on sensor i0k’s measurement and control input ui0

k .
We can see the estimate covariance P i0

k+1|k and the es-
timate x̂i0

k+1|k is influenced by the state dependent noise
Di0

k (x̂i0

k|k−1). Thus, x̂i0

k+1|k is minimum variance esti-
mate for the case of ui0

k ’s adoption by the plant.
x̂i0

k+1|k =Ax̂i0

k|k + Bui0

k

x̂i0

k|k = x̂i0

k|k−1 + Ki0

k {yi0

k − Ci0

k x̂i0

k|k−1} (7)

ui0

k = Kx̂i0

k|k (8)

Ki0

k =P i0

k|kC
i0T
k (Di0

k (x̂i0

k|k−1)V
i0

k Di0T
k (x̂i0

k|k−1))
−1 (9)

P i0

k+1|k =AP i0

k|kA
T + Wk

P i0

k|k =P i0

k|k−1 −Ki0

k Ci0

k P i0

k|k−1 (10)

To make the calculation simple, we use the estimate
x̂k|k−1 to compute state dependent noise Di

k in (9). Then
the estimate covariance P i

k+1|k satisfies Property 1.
Property 1: If the conditions D1

k≤D2
k and P 1

k|k−1 ≤

P 2
k|k−1 are both satisfied, we obtain P 1

k+1|k ≤ P 2
k+1|k for

the case sensor’s specification(C, V ) is the same.
Proof: By the following inequalities, we can see that,

estimate covariance P i
k+1|k becomes a monotonous non-

decrease about Di
k if the each case sensor’s specification

isn’t different.
P 2

k+1|k−P 1
k+1|k

=A{(I−K2
kC)(P 2

k|k−1−P 1
k|k−1)(I−K2

kC)T

+2K1
k(D1

kV D1T
k +CP 1

k|k−1C
T )K1T

k

+K2
k(D1

kV D1T
k + D2

kV D2T
k +2CP 1

k|k−1C
T )K2T

k

− (K2
k +K1

k)(D1
kV D1T

k +CP 1
k|k−1C

T )(K2
k +K1

k)T }AT

≥A{(I−K2
kC)(P 2

k|k−1−P 1
k|k−1)(I−K2

kC)T

+(K2
k−K1

k)(D1
kV D1T

k +CP 1
k|k−1C

T )(K2
k−K1

k)T }AT

≥0 (11)

This Property 1 shows that, when the distance between
the sensor and the plant becomes small, P i

k+1|k similarly
becomes small, too.

2.2 Neighbor discovery algorithm
When we deal in the large scale system with large

quantities of compared data and entail structural dynamic
change in the number of active sensors, it is difficult to
find the optimal solution for Problem 1 within 1 time step
as occasion demands. Hence we propose the strategy that
only compares data which is sent by sensors in the neigh-
borhood of the plant. Then we restrict the comparison
range of estimation by using Property 1. Now Problem 1
can be replaced in the following Problem 2.
Problem 2: Assume that Assumptions 1-4 holds. At

time step k, each node has predicted estimate values
x̂i0

k|k−1, P
i0

k|k−1 >0. Then each sensor i compute P i
k|k.

By comparing P i
k|k and within rk radius of the sensor

node i0k which undertake a temporary fusion center role,
decide the optimal state estimate x̂i

k+1|k that minimizes
following estimation error variance at the plant. Further,
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dom(rk) is the comparison range of sensor i0k which has
rk radius for comparing J .
J = E{(xk+1 − x̂i

k+1|k)T (xk+1 − x̂i
k+1|k)}

i ∈ dom(rk) (12)

In this Problem 2, we distribute fusion center role which
is managed by the plant in in Problem 1 across the sensor
i
f
k . Hence, the processing of data fusion and comaparison

is treated by i
f
k which vary by the one time step in Fig.2,3.
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Fig. 3 Selection of ifk

2.3 Selection of ifk
To select the temporary fusion center i

f
k at time step

k, we use a simple rule. When sensor i recieves a data
which involve information of J from the other active sen-
sors, sensor i compares J with the data from itself . If J
from the other sensors is more smaller than J from i, the
sensor i pull out of the selection. Consequently, only the
one sensor with the minimum J wins a place in the sen-
sor group which allow two-way communication. How-
ever, depending on the situation, it is difficult for all the
sensors even in the neighborhood of the plant to allow
two-way communication. Therefore, it is not necessarily
the case that single sensor ifk is chosen by active sensors.
We detailed procedure of this selection in section III.

The Problem 2 is solved by each sensor node i in
the neighborhood of the plant. We call this comparison
method for scheduling sensors a neighbor discovery al-
gorithm. In Problem 1, it is required that each sensor i is
able to obtain estimation from all sensors and sends con-
trol input and J to the plant. However, such a problem
setting is not realistic from the viewpoint of the commu-
nication restriction and power consumption [1].

2.4 Predicted Estimate Value Sharing Algorithm
Even when two or more sensors and estimators are

used in the same time step (ex. DKF), each KF only uses
the predicted estimate value which was calculated by it-
self at previous time step respectively. Thereafter, we call
this method that each estimator only leverages indepen-
dent predicted estimate P i

k|k−1, x̂
i
k|k−1 as predicted esti-

mate value update algorithm in this paper (Fig.4). In the
fault of this algorithm, regardless of sensor’s state (ac-
tive for observation and transmission / inactive for save
energy), all sensors in whole network have to update the
estimate value without interruption.
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Fig. 4 Predicted Estimate Value Update Algorithm
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Fig. 5 Predicted Estimate Value Sharing Algorithm

Then we propose the algorithm that each sensors
shares the optimal value as predicted estimate value from
among the value estimated at previous time step k − 1
by comparing J . This is called predicted estimate value
sharing algorithm (Fig.5). In this algorithm, each sen-
sors i

f
k−1 that transmitted the control input at previ-

ous time k − 1 step offers the predicted estimate value
P i0

k|k−1, x̂
i0

k|k−1 at present time k. Thus only sensors
which recieve the predicted estimate value from i

f
k−1 can

get on estimation at time step k. In this process of es-
timation, i

f
k−1 need to have specific predicted estimate

value P i0

k|k−1, x̂
i0

k|k−1 but the other sensors need not nec-
essarily have specific predicted estimate. When we use
this method in combination with neighbor discovery al-
gorithm, only active sensors in the neighborhood of the
plant may always estimate at each time step, we can re-
duce the computational cost in a large-scale system. Then
these predicted estimate value update algorithm and pre-
dicted estimate value sharing algorithm satisfy the fol-
lowing Theorem1.
Assumption 5: For each sensors i, we define state de-

pendent noise Di
k which is computed by predicted es-

timate value update algorithm and Di0

k which is com-
puted by predicted estimate value sharing algorithm re-
spectively. Then we assume these noise satisfy Di

k �Di0

k .

Theorem 1: At time step k, we define estimate co-
variance P

update

k+1|k which is computed by predicted esti-
mate value update algorithm and P share

k+1|k which is com-
puted by predicted estimate value sharing algorithm re-
spectively in each sensors i. Assume that Assumption 5
holds. Then P

update

k+1|k and P share
k+1|k satisfy the following.

P
update

k+1|k ≥ P share
k+1|k (13)

Proof: We define specific predicted estimate value
P i

k|k−1 which is calcurated by the predicted estimate
value update algorithm and P i0

k|k−1 which is computed by
predicted estimate value sharing algorithm respectively
in each sensors i. Additionally, Pi0

k|k−1 is the set of the
predicted estimate value which is collected by sensor i at
time step k. Then we can see P i0

k|k−1, P i
k|k−1 ∈ Pi0

k|k−1

and P i0

k|k−1 = minPi0

k|k−1. Therefore, the algebraic re-
lation P i0

k|k−1 ≤ P i
k|k−1 is satisfied. Hence, under the

assumption Di
k � Di0

k , we can see P
update

k+1|k ≥ P share
k+1|k

by using a similar way in equation 11.

3. DKF-BASED ESTIMATION
In this section, we describes the estimation algorithm

based on DKF to solve the Problem 2.
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3.1 Neighbor discovery algorithm based on DKF
In this algorithm, only sensors in the neighborhood of

the plant observe and estimate the plant’s state by using
the predicted estimate value sharing algorithm. There-
after, we call this algorithm DKF-neighbor discovery
strategy. First of all, we define the following assumption
about the communication of the sensor.
Assumption 6:

1. Each sensors range of radio communication is longer
than 1 step movement distance of the plant.
2. Each sensors doesn’t move at least when they observe
and estimate the plant.
3. Each sensors can make out the position of the other
sensors by receiving data.

We propose the following estimate algorithm for the
sensor network under Assumption 6.
DKF-neighbor discovery strategy
1. Each sensors ifk−1 = i0k sends the control input to the
plant at time step k − 1.
2. At time step k, i0k calculates P i0

k+1|k, x̂
i0

k|k respectively
by using KF. i0k sends informationP i0

k|k−1 , P i0

k|k , P i0

k+1|k ,
x̂i0

k|k−1and x̂i0

k|k to the other active sensors existing within
a radius rk from i0k.
3. Each sensors ik which receives information from i0k
begins observing and capturing yi

k. Then ik calculates
P i

k+1|k, x̂
i
k|k respectively by using information from i0k

and DKF.
4. ik transmits x̂i

k|k−1, P
i
k|k−1, x̂

i
k|k, P

i
k|k, P

i
k+1|k within

rk1 radius and recieve data from the other ik. Thus ik
compares estimate covariance with neighborhood active
sensors. It means that each sensors stand in sensor groups
among sensors which can comunicate each other and se-
lect the temporary fusion center ifk in line with selection
method of ifk previously described.
5. As a result, the sensor i

f
k which has the minimum

estimate covariance is selected among the each sensors
group.
6. Each sensors i

f
k computes and updates x̂i

k|k, P i
k|k,

x̂i
k+1|k and P i

k+1|k by using DKF and information from
the other sensors in the sensor group.
7. ifk transmits control input ui

k and P i
k+1|k to the plant.

8. When i0k can not recognize the control input from i
f
k ,

i0k transmits control input and P i0

k+1|k to prevent no con-
trol input reaching the plant.
9. At time step k + 1, each sensors ifk works as i0k+1.
The communication distance rk of each sensors ik de-
pend on the distance lk between ik and the plant. To
compute rk, we use x̂i0

k|k−1 which is estimated by i
f
k−1

in this paper.

rmax ≥ rk = δlk, δ > 1 (14)

The communication radius is longer than the moving dis-
tance of the plant by (14) and shorter than the upper
bound rmax ≥ rk which is each sensor’s maximum range
of radio communication. Moreover, when ik receives in-
formation from two or more i0k , ik selects sensor i0∗k

which has the minimum evaluation function J . Then
ik sets rk1 = r∗k to hold the communication with i0∗k . As

an application of this method, we enable sensors which
are in the neighborhood of the plant but cannot allow
two-way communication with i

f
k−1 to start estimation by

using multi-hop communication and predicted estimate
value sharing algorithm at process 4 . Then, when all
sensors share same predicted estimate value by repeating
predicted estimate value sharing algorithm , the relation
P 1

k|k−1 = P 2
k|k−1 and Property 1 are always satisfied.

3.2 Estimation algorithm based on DKF with pre-
dicted estimate value sharing algorithm
Now, the sensor group that received P i0

k|k−1, P i0

k|k ,
P i0

k+1|k, x̂
i0

k|k−1and x̂i0

k|kfrom i
f
k−1 is assumed to be ik ∈

1, . . . , n. Each ik estimates as follows by using obser-
vation data yi

k and P i
k+1|k, x̂

i
k|k, P

i
k|k, x̂

i
k|k−1, P

i
k|k−1

which are sent by the other active sensors jk ∈ ik.
x̂i

k+1|k = Ax̂i
k|k + Bui

k

x̂i
k = x̂i0

k|k−1 + Ki
k{y

i
k − Ci

kx̂
i0

k|k−1} (15)

Ki
k =P i

kC
iT
k (Di

k(x̂i
k|k)V i

kD
iT
k (x̂i

k|k))−1 (16)

(P i
k)−1 =(P i0

k|k−1)
−1

+CiT
k (Di

k(x̂i
k|k)V i

kD
iT
k (x̂i

k|k))−1Ci
k (17)

P i
k|k = [(P i

k)−1 +

n∑
j=0

{(P j

k|k)−1 − (P j

k|k−1)
−1}]−1 (18)

P i
k+1|k=AP i

k|kA
T + Wk (19)

x̂i
k|k =P i

k|k[(P i
k)−1x̂i

k +
n∑

j=0

{(P j

k|k)−1x̂
j

k|k

− (P j

k|k−1)
−1x̂

j

k|k−1}] (20)

Above estimation algorithm for target guidance is based
on the algorithm for target tracking in [13]. Furthermore,
our proposed algorithm considers the effect of state de-
pendent noises and responds to predicted estimate value
sharing algorithm. First, according to DKF-neighbor dis-
covery strategy, each sensors ik estimates the plant’s state
by using yi

k and information from i0k in (15), (17). Next,
each ik exchanges estimation result mutually among the
other active sensors jk. Thus ik compares estimate co-
variance with jk and chooses the sensor ifk which has the
minimum estimate covariance. When ik select itself as ifk
which is a candidate target and become the temporary fu-
sion center, ik updates estimation by using estimation re-
sults of jk in (18), (20)and compute the control input. By
using these estimation comparison and sharing, we can
prevent entire ik from transmitting the control input to
the plant. However, as explained in previous section, the
control input cannot also be uniquely decided because it
is not necessarily the case that single sensor ifk is chosen.
Hence, in this case, the plant needs to select the optimal
value by comparing corresponding P i

k+1|k from among
two or more than two control inputs. Therefore, we can
see the control input which minimize the evaluation func-
tion J and the solution of Problem 2 as the following.

uk =Kx̂
j

k|k

x̂
j

k|k =min trace(P j

k+1|k) (21)
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The above-mentioned estimation algorithm which bases
on DKF satisfies the following propositions.
Property 1: The estimation error covariance matrix

which is calculated by DKF and using predicted estimate
value sharing algorithm is smaller than the matrix which
is calculated by KF , for the case these estimation is based
on the same predicted estimate value.
Proof: (17), (18) are the estimation error covariance

matrixes of the sensor ik calculated respectively by KF
and DKF. (18) is computed by adding information (22) to
(17) from other sensors jk.

n�
j=0

C
jT
k D

j
k(x̂j

k|k)V j
k D

jT
k (x̂j

k|k)Cj
k ≥ 0 (22)

Hence P i
k≥P i

k|k is satisfied. Therefore, AP i
kA

T +Wk ≥

AP i
k|kA

T +Wk is also shown. It means that when we
use the estimation error covariance which is computed by
DKF and the estimation from other sensors, the estimate
result is more accurate than the estimate result which is
computed by KF.
Property 2: In Problem 2, when we assume that As-

sumption 6 holds, upper bound trace P i0

k+1|k of the eval-
uation function J is given by the control input in (8).
Proof: In our proposal method, each sensors i

f
k−1

which sent the control input to the plant at previous time
step k − 1 send predicted estimate value to other sensors
ik then ik begin observation and estimation at time step k.
In the process of the information exchange with i

f
k−1, ik

whose estimate result P i
k+1|k satisfies P i0

k+1|k < P i
k+1|k

is passed over ifk which transmit control input at time step
k. Therefore, the upper bound value of J is given from
one of the sensors ifk−1.
Boundedness of estimate error covariance matrix
When the state dependent noise Di0

k monotonically non-
decreases at time step k, the estimation error covariance
P i0

k+1|k that ifk−1 monotonically non-decreases similarly.

P i0

k+1|k − P i0

k|k−1

≥A{(I −Ki0

k Ci0)(P i0

k|k−1 − P i0

k−1|k−2)(I −Ki0

k Ci0)T

+(Ki0

k −Ki0

k−1)(D
i0

k−1V Di0T
k−1 + Ci0P i0

k−1|k−2C
i0T )

( Ki0

k −Ki0

k−1)
T }AT

≥0 (23)

We can see P i0

k|k−1≥P i0

k−1|k−2 from the relation Di0

k−1≥

Di0

k−2 in the same way proof 2.1. Then, if communication
radius rk and Di0

k are finite values, the affect of Di0

k in
estimation error covariance becomes smaller according
to the passage of time. Thus we define the feedback gain
L from Assumption 3. For the case each estimations are
based on the same initial value, and ifA� :=A−LCi0 is an
asymptotically stable, estimation error covariance P (K)
computed by Kalman gainK becomes smaller than P (L)
which is based on L[14]. Now, we define renewing time
as k=0 when Di0

k becomes upper bound D.

Pk|k−1(L)=A�kP0(A
�T )k

+
k−1�
t=0

A�t[W + LDVDTLT ](A�T )t (24)

The right side of (24) is settled in k → ∞ and we can see
the following inequality.

Pk|k−1(K) ≤ Pk|k−1(L) < ∞ (25)

Therefore, ifDi0

k is a finite value , and even a monotonous
non-decrease, P i0

k+1|k reaches the upper threshold with
the passage of time k → ∞.

4. EXPERIMENTAL VERIFICATIONS
In this section, a effectiveness of the proposal estima-

tion algorithm is evaluated by experiment. In this ex-
periment, each measurement output is calculated from
the image of a CCD camera mounted above the vehicle
as shown in Fig.6. The video signals are acquired by a
frame grabber board PicPort-color and image processing
software HALCON generate nine measurements. Conse-
quently, nine sensor nodes and measurement noises exist
in the computer. We employ DS1104 (dSPACE Inc.) as
a real-time calculating environment for an estimation and
sensor scheduling.

Transmitter

Computer
Camera

Sensors
DS����

PicPort-color

Vehicle

Halcon

Fig. 6 Experimental setup

The experiment was carried out on a two-wheeled ve-
hicle as the plant. Now two-wheeled vehicle has a non-
holonomic constraint. However two-wheeled vehicle can
be defined following framework via virtual structure for
feedback linearization[15].

A =

⎡
⎢⎣

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

⎤
⎥⎦ , B =

⎡
⎢⎢⎣

T 2

s

2 0

0
T 2

s

2
Ts 0
0 Ts

⎤
⎥⎥⎦ (26)

where Ts=0.1 and x0=[2.0 1.0 0 0 ]T are the sampling
time and the initial state respectively. In this verification,
we use nine sensor nodes. Then each sensor node has
the following measurement equation and the position of
sensor Si

k=(X i
k,Y

i
k) is shown in (28) respectively.

C1
k =[1 1 0 0] ,C2

k = [1 1 1 1] ,C3
k = [1 1 0 0]

C4
k =[1 1 1 1] ,C5

k = [1 1 0 0] ,C6
k = [1 1 1 1]

C7
k =[1 1 0 0] ,C8

k = [1 1 1 1] ,C9
k = [1 1 1 1] (27)

S1 =(0, 0), S2 = (0, 0.5), S3 = (0, 1.0)
S4 =(1.0, 0), S5 = (1.0, 0.5), S6 = (1.0, 1.0)
S7 =(2.0, 0), S8 = (2.0, 0.5), S9 = (2.0, 1.0) (28)

Additionally, the covariance matrices of noisesW and V i

are assumed to be as the following, respectively.

W = 1 × 10−3I4 (29)

V i = diag{0.8, 1.4, 0.0045, 0.0045} (30)
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Thus we design the feedback gain K by LQG control and
we assume the state dependent noise Di

k(xk) in the form
following.

Di
k(xk)=

⎡
⎣

0.1+ � xk −X i

k
� 0 0 0

0 0.1+ � yk − Yi

k
� 0 0

0 0 1 0

0 0 0 1

⎤
⎦ (31)

In this case, we set the initial state of the plant as x0 =
[1.5 1 0 0] T and the initial estimation error covariance
matrix was set as P0 = 0.1 × I . Moreover, we assume
each sensor’s maximum range of radio communication
rmax = 1.5 with δ = 2. The experimental results are
shown in Fig. 7-10. Fig.7 is a comparison between true
value of vehicle’s trajectory x̂k|k and estimate value of
them at each time step. We can see the vehicle reached
the desired value (x, y) = (0, 0) by using state feedback
control and the control input from sensors in the same
way as the simulation result in Fig.7.
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Fig. 7 Vehicle’s Trajectory (Experiment)
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Fig. 8 Selection at Sensor5 (Experiment)

Fig.8 shows the selection of the predicted estimate val-
ues which was sent by other sensors to sensor 5. This re-
sult shows that the sensor 5 can estimate by using optimal
predicted estimate value which is based on predicted esti-
mate value sharing algorithm. Fig.9 shows the switching
of the control input at the plant. This result is not fed back
to the sensor network side. However, the vehicle reached
the nearby desired value even if each sensors cannot com-
pletely understand which control input was selected by
the plant.
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Fig. 9 Switching of Sensors (Experiment)
Fig.10 is a comparison between the minimum evalua-

tion function which is based on the proposal method and

previous method respectively. As shown in Fig.10, the
estimation error covariance which bases on our proposal
method is smaller than the estimation error covariance
which bases on previous method.
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Fig. 10 Trace Pk|k−1(Experiment)

5. CONCLUSION
In this paper, we proposed estimate algorithm as DKF-

neighbor discovery strategy which is based on DKF
that combined neighbor discovery and predicted estimate
value sharing algorithms. Finally, we evaluated the effec-
tiveness of this algorithm by the experiments. Then we
designed the feedback control system via a sensor net-
work by using these algorithms.
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