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Abstract: This paper deals with formation control strategies based on Virtual Structure (VS)
for multi-vehicle systems. We propose several control laws for networked multi-nonholonomic
vehicle systems in order to achieve VS consensus, VS Flocking and VS Flocking with collision-
avoidance.
First, Virtual Vehicle for the feedback linearization is considered, and we propose VS consensus
and Flocking control laws based on a virtual structure and consensus algorithms. Then, VS
Flocking control law considering collision avoidance is proposed and its asymptotical stability
is proven.
Finally, simulation and experimental results show effectiveness of our proposed approaches.

1. INTRODUCTION

Recently there have been a lot of progress for new theories
that creates a fusions of graph theories and system control
theories for cooperative control problems of distributed
networked control systems; e.g., Ren [2005]. A multi-agent
control problem is one of significant topics where each
agent works autonomously by using information of other
agents over the communication network.

In the networked multi-agent systems, consensus means
to reach an agreement regarding a certain quantity of
interest that depends on the state of of dynamical agents.
Consensus algorithm using graph theory is studied as a
control problem of multi-agent systems in Olfati-Saber
[2007, 2004]. Formation control problems are expected at
various fields, e.g. satellites, airship, intelligent transport
systems and load carriage. The consensus problems can be
applied to formation control for multiple vehicles that is
essential to be able to behave high-efficiency Tanner [2005,
2007], Sepulchre [2005], Ren [2006]. A vehicle is generally a
nonholonomic system and it has a velocity constraint that
its wheels cannot move side-away.

Many research results for formation control of nonholo-
nomic systems have been reported Tanner [2005, 2007],
Ikeda [2004]. Consensus problems with collision avoidance
for multi-agent systems have been discussed in Tanner
[2005, 2007], Sepulchre [2005]. However the control law
could not achieve desired formation because it dose not
consider control of relative position. In Ren [2006], a con-
trol law which can construct any formations, was proposed
for multi-agent systems. However it has been difficult to
apply it for general nonholonomic vehicle control systems.
Recently there have been a lot of progress for nonholo-
nomic formation problems e.g., in Lin [2005], Dimarogonas

[2007], but the algorithms proposed in the previous papers
were complicated for real-time control applications.

On the other hand, a simple control law that makes
any formation using deviation model (Virtual model) was
proposed in leader-follower type, but it had no information
exchange among agents in Ikeda [2004].

In this paper, we construct multi-agent systems based on
virtual structure and propose novel formation control laws
by using information exchange of other agents.

Several control strategies for networked multi-nonholonomic
vehicle systems in order to achieve VS consensus, VS
Flocking and VS Flocking with collision-avoidance are
proposed. Furthermore, the asymptotical stabilities of the
closed-loop system with the networked multi-nonholonomic
vehicle and the proposed control strategies are proven
theoretically.

Finally, the effect of the proposed control laws are evalu-
ated via control simulations and experiments.

2. MULTI-VEHICLE SYSTEMS

Our controlled plants are networked multi-vehicle systems
which consist N vehicles ( N agents) under the following
assumption.

Assumption 1. There are an information network be-
tween Any ith vehicle and jth vehicle (i 6= j) is connected
and can exchange information of states of each vehicle.

Graph theory is a useful mathematical tool to represent
information network structures. The network structure
with Assumption 1 is said to be “connected graph” if it has
bidirectional communication edges, or “strongly connected
digraph” if it has unidirectional communication edges.
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Fig. 1. ith Real Vehicle and corresponding Virtual Vehicle

In this paper, we use graph Laplacian for network struc-
tures expressed mathematically. Graph Laplacian L = [lij ]
consists of lii =

∑

j 6=i aij , lij = −aij , i 6= j if aij = 1 that
means jth vehicle send some information to ith vehicle,
otherwise aij = 0.

2.1 Vehicle Model

The vehicle treated in this paper is a two-wheeled vehicle
which is shown in Fig.1 (lower left). We assume that
N vehicles can be expressed via an identical model and
friction force can be ignored. The kinematic model of ith
vehicle is described as





ẋi

ẏi

θ̇i



 =

[
cos θi 0
sin θi 0

0 1

] [
vi

ωi

]

, (1)

where (xi, yi) are the positions of center of gravity of ith
vehicle, θi is a heading angle of ith vehicle and vi and ωi

are the control inputs. It is well known that above vehicle
models have constraint on its velocity as

ẋi sin θi − ẏi cos θi = 0. (2)

Therefore these vehicles are nonholonomic.

2.2 Virtual Structure (VS)

We consider Virtual Structure (VS) using Virtual Vehicle
(VV) Ikeda [2004] for each vehicle as shown in Fig.1 (upper
right). By the positional relationship between vehicle and
VV in Fig.1, the kinematics model of ith VV is described
as

[
xri

yri

θri

]

=

[
xi + xdi cos θi − ydi sin θi

yi + xdi sin θi + ydi cos θi

θi

]

. (3)

where (xri, yri) are positions of center of gravity of ith
VV, θri is heading angle of ith VV and xdi, ydi are distance
between VVs and vehicles. The derivative of (3) are given
by





ẋri

ẏri

θ̇ri



 =

[
Bi

Bθ

] [
vi

ωi

]

,

where

Bi =

[
cos θi −xdi sin θi − ydi cos θi

sin θi xdi cos θi − ydi sin θi

]

, (4)

Bθ =[ 0 1 ] . (5)
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Fig. 2. Position of VSs

In this kinematics model, Bi is nonsingular matrix if
xdi 6= 0. In this paper, we consider formation control
problems for these VS systems (4).

3. VS CONSENSUS PROBLEMS

The goal of formation control problems is that N vehicles
preserve any formation based on information exchange be-
tween them over the network. To maintain any formations,
the VVs of each vehicle has to converge to a common
position as shown in Fig.2.

3.1 Control Objectives

To converge to a common value for VV of each vehicle, It
is necessary to guarantee consensus for positions of center
of gravity and heading angle of VVs as

xri → xrj , yri → yrj , θri → θrj (t → ∞). (6)

This consensus is called VS consensus.

Lemma 1. Consider the N × N graph Laplacian L with
strongly connected digraph. If the systems can be de-
scribed as

ẋ = −L.mx (7)

where x = [xT
1
xT

2
· · ·xT

N ]T ∈ R
Nm are the state of all

systems and L.m = L ⊗ Im , the state x converge as

x → (xr1x
T
l1 ⊗ Im)x(0) = 1 ⊗ α (t → ∞), (8)

where xr1, xl1 are right and left eigenvector of zero eigen-
value of L with xT

l1xr1 = 1 and xT
l11 = 1, ⊗ denotes

Kronecker product, α ∈ R
m is consensus value and 1 =

[1 1 · · · 1]T ∈ R
N Olfati-Saber [2004].

Proof 1. See Olfati-Saber [2004] for proof.

From Lemma 1, the all of states converge to a common
value α as

x1 = x2 = · · · = xN = α. (9)

3.2 Control Law for VS Consensus

To achieve VS consensus, we propose the following control
law for the vehicle i as
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Control law 1.

ui = B−1

i

(

−k
∑

j∈Ni

(ri − rj) + ṙd

)

, (10)

where ui = [vi ωi]
T , ri = [xri yri]

T , Ni is ith neighbor
set, ṙd ∈ R

2 is constant reference velocity and k > 0 is
controller gain.

Theorem 1. Consider a system of the N vehicles with
kinematics (4) and Control Law 1 (10). If Assumption
1 and ṙd 6= 0 are satisfied, then VS consensus achieves
asymptotically.

Proof 2. All of the VS systems (4) without its angle θri

can be written as

ṙ =⊕
N∑

i=1

Biu, (11)

where r = [rT
1

rT
2

· · · rT
N ]T , u = [uT

1
uT

2
· · · uT

N ]T ,

⊕
∑N

i=1
Bi is matrix that diagonal block elements are Bi.

The Control law 1 (10) can be written as

u = ⊕
N∑

i=1

B−1

i (−kL.2r + 1 ⊗ ṙd) . (12)

Let re = r − 1 ⊗ rd, then we get the following from (11)
and (12),

ṙe = −kL.2re. (13)

By Lemma 1, the systems (13) achieve consensus as re →
1⊗α (t → ∞). Hence, we can conclude that the positions
of VVs converge to a common value as

r → 1 ⊗ (α + rd) (t → ∞). (14)

The consensus for r is achieved as ri → rj → α + rd.
Next, we consider heading angles θri of VVs. Substituting
Control law 1 (10) into θ̇ri in (4) and considering ṙd =
[vd cos θd vd sin θd]

T , we get that

θ̇ri = −
vd

xdi

sin(θri − θd). (15)

Hence, We have that θri → θd (t → ∞). Therefore VS
consensus is achieved asymptomatically. Furthermore, the
any formation shape is guaranteed.

Bi is nonsingular matrix, there is not singular value in
Control Law 1. Then, the vehicles can make any formations
when VVs converge to a common value. By selecting the
distance for VVs (xdi, ydi) appropriately as shown in
Fig.2, the vehicles achieve any formation shapes.

The Control law 1 can be extended and the vehicles can
achieve any formations even if distances for VVs are same
as

xd1 = xd2 = · · · = xdN , yd1 = yd2 = · · · = ydN ,

(16)

We propose the new control law for the ith vehicle as

Control law 2.

ui = B
−1

i

(

−k

∑

j∈Ni

(

(ri − rri) − (rj − rrj)

)

+ ṙd

)

(17)

where rri is reference relative position to ri.

Theorem 2. Consider a system of the N vehicles with
kinematics (4) and Control Law 2 (17). If assumption
1 and ṙd 6= 0 are satisfied, then VS consensus achieve
asymptotically.

Proof 3. This can be proven in a same way with Theorem
1.

3.3 Control Law with Velocity Tracking for VS Consensus

The Control laws 1 and 2 include feedforward terms which
are reference signals ṙd. In case of physical vehicles, the
motion of vehicles are not exactly same between them.
Therefore, the error of velocities (ṙd−ṙi) do not converge to
0. Consequently we propose new control law with velocity
control for ith vehicle as

Control law 3.

v̇ri=̇v
∗
− kvr(vri − v∗) (18)

ui=B
−1

i

(

−k

∑

j∈Ni

(

(ri − rri) − (rj − rrj)

)

+ vri

)

where v∗ is constant reference velocity and kvr > 0 is
controller gain.

Theorem 3. Consider a system of the N vehicles with
kinematics (4) and Control law 3 (18). If Assumption
1 and v∗ 6= 0 are satisfied, then VS consensus achieve
asymptotically.

Proof 4. Substituting Control law 3 (18) into the ith
vehicle kinematics (4), we get that

v̇r = 1 ⊗ v̇∗ − kv(vr − 1 ⊗ v∗)

˙̂r =−kL.2r̂ + vr. (19)

Using vre = vr − 1 ⊗ v∗, re = r̂ −
∫ t

0
1 ⊗ v∗dτ ,

[
ṙe

v̇re

]

=

[
−kL.2 I2N

0 −kvrI2N

] [
re

vre

]

. (20)

By Lemma 1, the systems (20) achieve consensus and
velocity errors re converge to 0 as

re → 1 ⊗ α vre → 0 (21)

Therefore any formation shape is guaranteed.

4. VS FLOCKING PROBLEMS

4.1 Control Objectives

Flocking is defined that velocity and inter-vehicle distances
converge to common value. It could be as

ṙi → ṙj (22)

VS consensus problem considers only relative positions
between vehicles. Here, we discuss VS Flocking problems
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that is considered both relative positions and relative
velocities between VVs. The velocities is defined as vri =
[vxi vyi]

T . Then it is expressed as

v̇ri = ai, ṙi = vri, (23)

where ai is control input.

4.2 Control Law for VS Flocking

The following control law is proposed

Control law 4.

v̇ri =−
∑

j∈Ni

ki

(
(r̂i − r̂j) + kv(vri − vrj)

)

ui = B−1

i vri, (24)

where kv, ki > 0 are controller gains.

Theorem 4. Consider a system of the N vehicles with
kinematics (4) and Control law 4 (18). If Assumption
1 and 1 > |1 + 4/(k2

vλi)|, then VS Flocking achieve
asymptotically, where λi are eigenvalues of weighted graph
Laplacian Lw including ki and vi → vj 6= 0.

Proof 5. The control input v̇r for multi-vehicle systems
can be written as

v̇r = −Lw.2r̂ − kvLw.2vr. (25)

By B−1

i , the position coordinate of VS system (4) can
be also described as (23). Therefore, if flocking problem
achieve in second order system (23), VS systems with (4)
achieve VS flocking problem. By (23) and (25), we have
following result

[
˙̂r
v̇r

]

=

[
0 IN

−Lw −kvLw

]

︸ ︷︷ ︸

Σ

⊗I2

[
r̂
vr

]

(26)

Σ has 2 zero eigenvalues. Selecting kv to satisfy as

1 > |1 + 4/(k2

vλi)|, (27)

where λiis ith eigenvalue of −Lw, All of eigenvalues
without zero have negative real parts Ren [2006]. Finally,
we consider time response of (26) and transform Σ to
Σ = SJS−1 where J is Jordan form composed of any
vector as S = [ω1 ω2 · · ·ω2N ], S−1 = [ν1 ν2 · · · ν2N ]T .
ω1, ν2 are right and left eigenvector of Σ to λ(Σ) = 0.
ω2, ν1 are vectors that Σω2 = ω1, ν

T
1

Σ = νT
2

. The state of
multi-vehicle at t → ∞ is expressed as,

[
r̂
vr

]

= lim
t→∞

S exp(Jt)S−1 ⊗ I2

[
r̂(0)
vr(0)

]

→ (ω1ν
T
1

+ ω1ν
T
2

t + ω2ν
T
2

).2

[
r̂(0)
vr(0)

]

.

(28)
The each vector is written as

ω1 =

[
1

0

]

, ω2 =

[
0

1

]

, ν1 =

[
p

0

]

, ν2 =

[
0

p

]

,

where 0 = [0 0 · · · 0]T ∈ R
N , p is eigenvector of λ(−Lw) =

0 and pT
1 = 1. Then, we get

[
r̂
vr

]

→

[
(1pT ).2r̂(0) + (1pT ).2v(0)t

(1pT ).2v(0)

]

(29)

Therefore VS Flocking is achieved asymptotically.

4.3 Control Law with Collision Avoidance for VS Flocking

From Theorem 4, the formation shape was guaranteed in
VS Flocking problem. However, in case of physical vehicles,
the collision avoidance is also important problem. It is
well known that artificial potential approach is effective to
avoid collisionTanner [2005]. The artificial potential gives
repulsive force to other vehicles if a vehicle come close to
other vehicles. Here, we use following artificial potential
function Tanner [2005]

Ui =
∑

j∈Ni

Uij , Uij =
d

‖rij‖
+ log ‖rij‖, (30)

where rij = ri − rj and d is controller gain. We have

to select d that satisfies d > 2(
√

x2

di + y2

di + Rv) where
Rv is the largest radius of the vehicles. Then we propose
following control law with collision avoidance as

Control law 5.

v̇ri = uco
i + uca

i

ui = B−1

i vri (31)

where

uco
i = v̇∗ − kvr(vri − v∗) (32)

−
∑

j∈Ni

ki

(

(r̂i − r̂j) + kv(vri − vrj)
)

uca
i =−∇ri

Ui|
∑

j∈Ni

ki(vri − vrj)| (33)

where kvr, kv, ki > 0 are controller gains. (32) is the
control law to achieve consensus and (33) is the control
law to achieve collision avoidance.

Theorem 5. Consider a system of the N vehicles with
kinematics (4) and Control law 5 (31). If Assumption 1
and assumption of the bidirectional communication for the
network, and kvr + kvλ2 − fmax‖Lw.2‖ > 0 are satisfied,
then VS Flocking achieves asymptotically.

Where λ2 is the smallest eigenvalue of Lw without zero
eigenvalue and fmax is the maximum potential force of
and v∗ 6= 0.

Proof 6. Let ve = vr − 1 ⊗ v∗, then the control input v̇e

for multi-vehicle systems is written as

v̇e =−kvrve − Lw.2r̂ − kvLw.2ve

−⊕
∑

i

∇ri
Ui|Lw.2ve| (34)

where ⊕
∑

i ∇ri
Ui is matrix that the diagonal block ele-

ment are ∇ri
Ui. Now, we define the function V for the

system as

V (x) =
1

2
(vT

e ve + r̂T Lw.2r̂) ≥ 0. (35)

where x = [ve, r̂]
T . Because of network structure of multi-

vehicle systems with bidirectional communication can be
represented undirected graph. Then we have that Lw.2 =
LT

w.2. The derivative of this function along trajectories of

the V̇ are given by

V̇= r̂T Lw.2
˙̂r + vT

e v̇e
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≤ −(kvr + kvλ2 − fmax‖Lw.2‖)‖ve‖
2, (36)

where λ2 is smallest eigenvalue of Lw without zero eigen-
value and fmax is maximum potential force. Choosing

kvr + kvλ2 − fmax‖Lw.2‖ > 0, (37)

the V̇ is negative semi-definite. Furthermore, V̇ = 0 is
satisfied by only ve = 0. Applying LaSalle’s invariant
principle, we can see that ve converge to 0 asymptotically.
Therefore, the consensus is achieved as vri → v∗. Further-
more, we can see that

v̇r = −Lw.2r̂ = 0 (38)

Therefore, r̂i → r̂j . Thus, VS Flocking with collision
avoidance is achieved asymptotically.

5. SIMULATIONS

Consider a group of 5 vehicles that has network structure
as shown in Fig.3 (upper). Fig.4 shows the desired forma-
tion and distances of VS.

5.1 VS Consensus Problems

We verify the Control law 2 (10). The parameter for VS
and control law are selected as k = 0.5. The reference
velocities are ṙd = [0.1 cos(π/2) 0.1 sin(π/2)]T .

Fig.5 shows the trajectory of the vehicles. From this result,
the vehicles achieve desired formation and the position of
VVs converge to a common value.

5.2 VS Flocking Problems

The Control law 4 (24) is examined. The parameters for VS
and control law are selected as ki = 0.1 and kv = 1. The
reference velocities are ṙd = [0.1 cos(π/2) 0.1 sin(π/2)]T .
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Fig. 6. Trajectory of the five vehicles (VS Flocking)
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Fig.6 shows the trajectory of the vehicles and Fig.7 shows
the velocity errors between VVs. From these results, the
vehicles achieve formation and the position and velocity of
VVs converge to a common value.

5.3 VS Flocking Problems with Collision Avoidance

We verify the proposed Control law 5 (31). A group of
5 vehicles that has the network structure of line graph is
considered as shown in Fig.3(lower). The parameter for
VS are selected as xdi = 0.05, ydi = 0, i.e. the distances of
VVs is a common value. The parameter for control law are
selected as kvr = 1, kv = 2, ki = 0.3. The parameter for
collision avoidance function is selected as d = 0.3 by reason
of the largest radius of the physical vehicles is Rv = 0.08.
The reference velocities are v∗ = [0.1 π

2
]T . The desired

formation structure is shown in Fig.4.

Fig.8 shows simulation results in case with collision avoid-
ance and without collision avoidance as uca

i = 0. This
shows that vehicles achieve formation with collision avoid-
ance.
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6. EXPERIMENTS

We verify the efficacy of the proposed control laws via
control experiments for VS consensus problem and VS
Flocking problem. The experiments were carried out on
2 vehicles as shown in Fig.9. We use the dSPACE as real-
time calculating machine and a sampling rate is choosen
as 0.2 [s] because of the time delay of the wireless network.

6.1 VS Consensus Problem

First, the proposed Control law 3 (18) for VS consensus
is verified. The parameters for VS and control law are
selected as xd1 = xd2 = 0.5, yd1 = yd2 = 0, rr1 =
[0 0.15]T , rr2 = [0 − 0.15]T , kvr = 0.02, k = 1. The initial
conditions are R1(0) = [0.27 0.18 0]T , R2(0) = [0.27 −
0.18 0]T . The reference velocity is vd = [0.07 0]T .

Fig.10 shows the trajectory of the positions of the 2
vehicles in the field. We can see that the VVs achieve
consensus.

6.2 VS Flocking Problem

We verify proposed Control law 5 (31) for VS Flocking
problems. The parameters for VS and control law are
selected as xd1 = xd2 = 0.1, yd1 = yd2 = 0, rr1 =
[0 0.15]T , rr2 = [0 −0.15]T , kvr = 0.5, ki = 0.05, kv = 0.1.
The initial conditions are R1(0) = [0.3 0.2 0]T , R2(0) =
[0.3 − 0.2 0]T . The reference velocity is vd = [0.07 0]T .

Fig.11 shows the trajectories of the positions of the vehicles
in the field and this shows the VVs achieve flocking.

7. CONCLUSIONS

In this paper, we proposed the formation control strategies
for networked multi-vehicle systems using virtual struc-
ture. Our proposed control laws could achieve desired
formations for nonholonomic systems.

Several control strategies for networked multi-nonholonomic
vehicle systems in order to achieve VS consensus, VS
Flocking and VS Flocking with collision-avoidance were
proposed.

The asymptotical stabilities of the closed-loop system
with the networked multi-nonholonomic vehicle and the
proposed control strategies were proven theoretically.

Finally, the effect of the proposed control laws were
evaluated via control simulations and experiments which
demonstrated the effectiveness of our approaches.

REFERENCES

Wei Ren, Randal W. Beard and Ella M. Atkins, “A Survey
of Consensus Problems in Multi-agent Coordination,” in
Proc. of American Control Conference, pp. 1859-1864,
June, 2005.

Reza Olfati-Saber, J.Alex Fax, Richard Murray, “Con-
sensus and Cooperation in Networked Multi-Agent Sys-
tems,” in Proc. IEEE, Vol. 95, No. 1, 2007.

Vehicle

Camera

Computer

Modem

DS1104

Image  

Processing 

Board

Fig. 9. Experimental setup

0 0.5 1 1.5 2 2.5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

X

Y

experiment

simulationVehicle 1

Vehicle 2

Fig. 10. Trajectory of two vehicles (VS consensus)

0 0.5 1 1.5 2 2.5

-0.2

-0.1

0

0.1

0.2

0.3

X

Y

experiment
simulation

Vehicle 1

Vehicle 2

Fig. 11. Trajectory of two vehicles (VS Flocking)

Reza Olfati-Saber and Richard Murray, “Consensus Prob-
lems in Networks of Agents With Switching Topology
and Time-Delays,” IEEE Trans. Automatic Control,
Vol. 49, No. 9, pp. 1520-1532, 2004.

Herbert G. Tanner, Ali Jadbabaie and George J. Pappas,
“Flocking in Teams of Nonholonomic Agents,” Cooper-
ative Control, LNCIS 309, pp. 229-239, 2005.

Herbert G. Tanner, Ali Jadbabaie, and George J. Pappas,
“Flocking in Fixed and Switching Networks,” IEEE
Trans. on Automatic Control, Vol.52, No. 4, 2007.

Rodolphe Sepulchre, Derek Paly and Naomi Leonard,
“Collective Motion and Oscillator Synchronization,”
Cooperative Control, LNCIS, Vol. 309, pp. 189-205,
2005.

Wei Ren, “Consensus Based Formation Control Strategies
for Multi-vehicle Systems,” in Proc. of American Con-
trol Conference, pp. 4237-4242, 2006.

Takashi Ikeda, Jurachart Jongusuk, Takayuki Ikeda and
Tsutomu Mita, “Formation Control of Multiple Non-
holonomic Mobile Robots,” IEEJ Trans. IA, Vol. 124,
No. 8, pp. 814-819, 2004. (in Japanese)

Zhiyun Lin, Bruce Francis and Manfredi Maggiore, “Nec-
essary and Sufficient Graphical Conditions for Forma-
tion Control of Unicycles,” IEEE Trans. on Automatic
Control, Vol. 50, No. 1, pp. 121-127, 2005.

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos, “On
the Rendezvous Problem for Multiple Nonholonomic
Agents,” IEEE Trans. on Automatic Control, Vol. 52,
No. 5, pp. 916-922, 2007.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5154


