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Abstract— This paper addresses the bilateral control of non-
linear teleoperation with time varying communication delays.
The proposed methods are two types of simple PD-type con-
trollers which consists of D-controls depending on (the upper
bound of) the rate of change of delay and P-controls depending
on the upper bound of round-trip delay. Using Lyapunov-
Krasovskii function, the delay-dependent stability of the origin
is shown for the ranges of gains. Furthermore the proposed
strategies also achieve master-slave position coordination and
bilateral static force reflection. Several experimental results
show the effectiveness of our proposed methods.

I. INTRODUCTION

Teleoperation is the extension of a person’s sensing and

manipulation capability to a remote location and it has been

tackled by researchers in control theory and robotics over

the last few decades. A teleoperator is a dual robot system

in which a remote slave robot tracks the motion of a master

robot, which is, in turn, commanded by a human operator. To

improve the task performance, information about the remote

environment is needed. In particular, force feedback from

the slave to the master, representing contact information,

provides a more extensive sense of telepresence. When this

is done, the teleoperator is said to be controlled bilaterally

[1].

In bilateral teleoperation, the master and the slave are

coupled via a communication network, and time delay is

incurred in transmission of data between the master and

slave site. It is well known that the delay in a closed-loop

system can destabilize an otherwise stable system. Recently,

essential research interest has been attracted by using the

Internet as a communication network for teleoperation [2]-

[6]. Using the Internet for communication network provides

obvious benefits in terms of low cost and availability. How-

ever, at the present time, for teleoperation over the Internet

the delays varies with such factors as congestion, bandwidth,

or distance, and these varying delays may severely degrade

performance or even result in an unstable system.

Stabilization for a teleoperation with constant communi-

cation delays has been achieved by the scattering transfor-

mation based on the idea of passivity [7] (This is equivalent

wave variable formulation [8]). Then, the additional structure

with position feedforward/feedback controls has proposed

to improve the position coordination and force reflection

performance [9], [10]. In [11]-[13], the PD-type controller
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without scattering transformation has been proposed which

guarantees the stability for the constant communication

delays. In these methods, the position coordination and

force reflection have also been achieved by explicit position

feedback/feedforward control. In [7]-[13], however, the time

varying communication delays has not been treated.

Several researchers have addressed a problem of the

teleoperation with time varying delays and several control

methods based on scattering transformation have been re-

ported. Some preliminary results are contained in [2], [3]. An

interesting result has been obtained in [4]. A simple modi-

fication to the scattering transformation has been proposed,

that inserts a time varying gain into the communication block

which guarantees passivity for arbitrary time varying delays

provided a bound on the rate of change of the time delays.

In [2]-[4], however, it is insufficient for the performance

of force reflection and/or positional coordination due to the

lack of the explicit position feedback/feedforward controls.

In [5], [6], they have proposed control methods without the

scattering transformation. However, there are problems that

the model of robots, the environment and the human operator

are required by the controllers. Then robustness for parameter

uncertainties has not been guaranteed and the controllers

have become complex.

In this paper, we address the bilateral control of nonlinear

teleoperation with time varying delays. Our proposed control

strategies are two types of simple PD-type controllers which

directly connects the master and slave robots by position

and velocity signals over the delayed communication. For

the velocity control, the first controller has a time varying

D-gains which depend on the rate of change of delays and

the second one has constant D-gains which are designed

under stability condition. Moreover the both controllers have

explicit position feedback/feedforward control. The proposed

control strategies are independent of parameter uncertainties

of the robot models, the human operator and the remote en-

vironment. Using Lyapunov-Krasovskii function, the delay-

depend stability of the origin is shown for the ranges of the

gains. Moreover the proposed framework enforces master-

slave position coordination and static force reflection. Several

experimental results show the effectiveness of our proposed

framework.

II. DYNAMICS OF TELEOPERATION SYSTEM

In this paper, we consider a pair of nonlinear robotic
system coupled via communication lines with time varying
delays as shown in Fig. 1. Assuming absence of friction and
other disturbances, the master and slave dynamics with n-
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Fig. 1. Teleoperation system

DOF are described as [15]
(

Mm(qm)q̈m(t) + Cm(qm, q̇m)q̇m(t) = fim(t) + Fop(t)

Ms(qs)q̈s(t) + Cs(qs, q̇s)q̇s(t) = fis(t) − Fenv(t),

(1)

where the subscript “m” and “s” denote the master and the

slave indexes, qm, qs ∈ Rn are the joint angle vectors,

q̇m, q̇s,∈ Rn are the joint velocity vectors, q̈m, q̈s,∈ Rn

are the joint acceleration vectors, τm, τs ∈ Rn are the input

torque vectors, Fop ∈ Rn is the operational force vectors

applied to the master by human operator, Fenv ∈ Rn is

the environmental force vectors applied to the environment

by the slave, Mm, Ms ∈ Rn×n are the inertia matrices,

Cmq̇m, Csq̇s ∈ Rn are the centrifugal and Coriolis torque

vectors, respectively. We assume that the gravity terms are

either pre-compensated by the local control. It is well known

that the dynamics (1) have several fundamental properties as

follows.

Property 1: The inertia matrices Mi is symmetric and

positive definite and both Mi and M−1
i

are uniformly

bounded.

Property 2: Under an appropriate definition of the matri-

ces Ci, the matrices Ni = Ṁi − 2Ci is skew symmetric.

For the human operator and the remote environment, we

assume as follows [12].

Assumption 1: The human operator can be modeled as

non-passive system that applies any constant force on the

master robot. The remote environment can be modeled as

passive system that is any linear spring–damper system.

Under above assumption, the human operator is described as

follows

Fop(t) = F̄op, (2)

where F̄op ∈ Rn is any finite constant vector. The remote

environment is described as follows

Fenv(t) = Beq̇s(t) + Keqs(t), (3)

where Be ∈ Rn×n is any positive semi-definite environmen-

tal damper matrix and Ke ∈ Rn×n is any positive semi-

definite environmental spring matrix.

The communication structure are assumed as shown in

Fig.1, where the forward and backward communications are

delayed by the functions of time varying delay Tm(t) and

Ts(t) as follows

Assumption 2: Tm(t) and Ts(t) are continuously differ-

entiable functions and satisfy as follows

0 ≤ Ti(t) ≤ T+
i < ∞, |Ṫi(t)| < 1, i = m, s, (4)

where T+
i ∈ R are upper bounds of the communication

delays. Moreover, the upper bound of the round trip commu-

nication delay T+
ms = T+

m + T+
s is known preliminarily, Ṫm

can be measured at the slave site and Ṫs can be measured at

the master site.

In addition, we assume for stability analysis as follows

Assumption 3: The velocities q̇m and q̇s equal zero for

t < 0.

III. CONTROL OBJECTIVES

We would like to design the control inputs τm and τs to

achieve as follows

Control Objective 1: (Stability) The teleoperation system

as shown in Fig. 1 is stable under the time varying commu-

nication delay, any constant operational inputs (2) and any

environment (3).

Control Objective 2: (Static Force Reflection) The static

contact force in slave side are accurately transmitted to the

human operator in the master side as follows

Fenv = Fop as t → ∞. (5)

Control Objective 3: (Master-Slave Position Coordina-

tion) If Fop = Fenv = 0, the position coordination error

qE goes to zero as

qE(t) := qm(t) − qs(t) → 0 as t → ∞, (6)

and the master and slave positions are coordinated.

Note that the Control Objectives 2 and 3 mean achieve-

ment at minimal level of ideal transparency [14].

IV. CONTROL DESIGNS

To achieve above control objectives, we proposed two

types of controllers for the teleoperation. One of them is

a PD-type controller with time varying gains and another

one is PD-type controller without time varying gains.

A. Control Law with Time Varying Gains

The proposed control law with time varying gains is now

given as

Control Law 1
8

>

>

>

<

>

>

>

:

fim(t) = Kmd(t) {q̇s(t − Ts(t)) − q̇m(t)}

− {Dmd(t) + Dp} q̇m(t) + Kp {qs(t − Ts(t)) − qm(t)}

fis(t) = Ksd(t) {q̇m(t − Ts(t)) − q̇s(t)}

− {Dsd(t) + Dp} q̇s(t) + Kp {qm(t − Tm(t)) − qs(t)} ,

(7)

where Kmd(t),Ksd(t),Dmd(t),Dsd(t) are time varying

gain matrices depending on Ṫm(t) and Ṫs(t) as follows

(

Kmd(t) = (1 − Ṫs(t))Kd

Ksd(t) = (1 − Ṫm(t))Kd,

(

Dmd(t) =
Ṫs(t)

2
Kd

Dsd(t) =
Ṫm(t)

2
Kd,

(8)

and Dp,Kp,Kd ∈ Rn×n are positive diagonal constant

matrices. Our proposed Control Law 1 (7) is using simple

PD type controller with P-control gain Kp and time varying

D-control gains Kmd(t),Ksd(t). Dp is the dissipation gain

used to stabilize the P-control with time varying delay and it

is designed from later stability analysis. Dmd(t) and Dsd(t)
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are the time varying quasi-dissipation gains used to stabilize

the D-control with time varying delay.

Note that the Control Law 1 (7) requires the position,

velocity and the rate of change of the delay signals (The rate

of change of the delay can be detected as shown in Appendix

A). The explicit position control improves the position coor-

dination and force reflecting performance in comparison with

the conventional scattering-based teleoperation [2]-[4]. The

time varying gains which depend on the rate of change of the

delay have been proposed in [4] stabilizing the time varying

delay. However, our proposed control law does not use the

scattering based approach. This is the main characteristic of

my research.

To facilitate the stability analysis of the system, the closed

loop system is now derived. The equilibrium points of the

positions of the master and the slave are defined as q̄m ∈ Rn

and q̄s ∈ Rn such that

{

F̄op = Kp(q̄m − q̄s)

0 = Keq̄s − Kp(q̄m − q̄s).
(9)

The new position variables with the origin of above equilib-

rium points are defined as follows

{

q̃m(t) = qm(t) − q̄m

q̃s(t) = qs(t) − q̄s.
(10)

Then substituting (2), (3), (7) and (9) into (1) and assembling

by (10), the closed loop systems can be described as

8

>

>

>

>

>

<

>

>

>

>

>

:

Mmq̈m + Cmq̇m = Kmd(t) {q̇s(t − Ts(t)) − q̇m}

− {Dmd(t) + Dp} q̇m + Kp {q̃s(t − Ts(t)) − q̃m}

Msq̈s + Csq̇s = Ksd(t) {q̇m(t − Tm(t)) − q̇s}

− {Dsd(t) + Dp} q̇s + Kp {q̃m(t − Tm(t)) − q̃s}

− Beq̇s − Keq̃s.

(11)

The following theorem describes stability properties of the

closed loop teleoperation (11) with Control Law 1.

Theorem 1: Consider the nonlinear teleoperation de-

scribed by (11) with Assumptions 1-3. Then for range of

the control gain Kp as follows

Kp <
2

T+
ms

Dp, (12)

the origin of the system q̇m, q̇s, q̃m, q̃s are asymptotically

stable and limt→∞ qm(t) = q̄m, limt→∞ qs(t) = q̄s.

Therefore the Control Objective 1 is achieved.

Proof: Define a positive definite function (Lyapunov-

Krasovskii function) for the system as

V 1(x) = q̇T
m(t)Mm(qm)q̇m(t) + q̇T

s (t)Ms(qs)q̇s(t)

+{q̃m(t)−q̃s(t)}
T

Kp {q̃m(t)−q̃s(t)}+q̃T
s (t)Keq̃s(t)

+

∫ t

t−Tm(t)

q̇T
m(ξ)Kdq̇m(ξ)dξ+

∫ t

t−Ts(t)

q̇T
s (ξ)Kdq̇s(ξ)dξ,

(13)

where x(t) =
ˆ

q̇T
m(t) q̇T

s (t) (q̃m(t) − q̃s(t))T q̃T
s (t)

˜T . The

derivative of the above Lyapunov function along trajectory

of the system is given by

V̇1 = − {q̇T
mKmd(t)q̇m − 2q̇T

mKmd(t)q̇s(t − Ts(t))

+ q̇T
s (t − Ts(t))Kmd(t)q̇s(t − Ts(t))}

− {q̇T
s Ksd(t)q̇s − 2q̇T

s Ksd(t)q̇m(t − Tm(t))

+ q̇T
m(t − Tm(t))Ksd(t)q̇m(t − Tm(t))}

− 2q̇T
mDpq̇m + 2q̇T

mKp(q̃s(t − Ts(t)) − q̃s)

− 2q̇T
s Dpq̇s + 2q̇T

s Kp(q̃m(t − Tm(t)) − q̃m)

− 2q̇T
s Beq̇s. (14)

Completing the square for first and second terms in above

equation, we have that

V̇1 = − ėT
mKmd(t)ėm − ėT

s Ksd(t)ės − 2q̇T
s Beq̇s

− 2q̇T
mDpq̇m + 2q̇T

mKp(q̃s(t − Ts(t)) − q̃s)

− 2q̇T
s Dpq̇s + 2q̇T

s Kp(q̃m(t − Tm(t)) − q̃m), (15)

where ėm = q̇s(t−Ts(t))− q̇m, ės = q̇m(t−Tm(t))− q̇s,

Using the fact that

q̃i(t − Ti(t)) − q̃i = −

∫ Ti(t)

0

q̇i(t − ξ)dξ, i = m, s (16)

fixing the final times as tf , and integrating the above
equation, we obtain

Z

tf

0 V̇1dt = −

Z tf

0
ėT

mKmd(t)ėmdt −

Z tf

0
ėT

s Ksd(t)ėsdt

− 2

Z tf

0
q̇T

s Beq̇sdt − 2

Z tf

0
q̇T

mDpq̇mdt − 2

Z tf

0
q̇T

s Dpq̇sdt

− 2

Z tf

0
q̇T

mKp

Z Ts(t)

0
q̇s(t − ξ)dξdt

− 2

Z tf

0
q̇T

s Kp

Z Tm(t)

0
q̇m(t − ξ)dξdt. (17)

The sixth term in (17) can be rewritten as follows

−2

Z tf

0

{q̇
T
m(t)Kp

Z Ts(t)

0

q̇
T
s (t − ξ)dξ}dt

= −

n
X

j=1

Kpj2

Z tf

0

{q̇mj

Z Ts(t)

0

q̇sj(t − ξ)dξ}dt, (18)

where q̇mj is a jth joint velocity of the master, q̇sj is jth

joint velocity of the slave and Kpj is jth P-control gain for

jth joint. Using the fact that −2aT b ≤ a2 + b2, a, b ∈ R,

Schwarz inequality and 0 < Ts(t) ≤ T+
s in Assumption 2,

above equation is easily transformed into

−2

∫ tf

0

{q̇mj

∫ Ts(t)

0

q̇sj(t − ξ)dξ}dt

≤ T+
s

∫ tf

0

q̇2
mjdt +

1

T+
s

∫ tf

0

{

∫ Ts(t)

0

q̇sj(t − ξ)dξ}2dt

≤ T+
s

∫ tf

0

q̇2
mjdt +

1

T+
s

∫ tf

0

Ts(t)

∫ Ts(t)

0

q̇2
sj(t − ξ)dξdt

≤ T+
s

∫ tf

0

q̇2
mj(t)dt +

∫ T+
s

0

∫ tf

0

q̇2
sjdtdξ

≤ T+
s

∫ tf

0

q̇2
mj(t)dt + T+

s

∫ tf

0

q̇2
sjdt. (19)
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Then the sixth and seventh terms in (17) can be rewritten as

follows

−2

∫ tf

0

{q̇T
mKp

∫ Ts(t)

0

q̇s(t − ξ)dξ}dt

≤ T+
s

∫ tf

0

q̇T
mKpq̇mdt + T+

s

∫ tf

0

q̇T
s Kpq̇sdt (20)

−2

∫ tf

0

{q̇T
s Kp

∫ Tm(t)

0

q̇m(t − ξ)dξ}dt

≤ T+
m

∫ tf

0

q̇T
sKpq̇sdt + T+

m

∫ tf

0

q̇T
mKpq̇mdt. (21)

Therefore, integral inequality (17) reduces to
∫ tf

0

V̇1dt ≤− λm(2Be)||q̇s||
2
2

− λm(Kmd(t))||ėm||22 − λm(Ksd(t))||ės||
2
2

− λm(2Dp − T+
msKp)||q̇m||22

− λm(2Dp − T+
msKp)||q̇s||

2
2. (22)

where λm(A) indicates the smallest eigenvalue of A and

the notation || ∗ ||2 denotes the L2 norm of a signal on the

interval [0, tf ]. Note that Kmd(t) and Ksd(t) are positive

definite from 1−Ṫi(t) > 0. Letting lim tf = ∞,
∫

∞

0
V̇1(x) ≤

0 under the condition (12), we conclude that the signals

q̇m, q̇s, q̃m, q̃s ∈ L∞, and q̇m, q̇s, ėm, ės ∈ L2.

From the closed loop dynamics (11), q̈m, q̈s ∈ L∞. This

implies that limt→∞ q̇m = limt→∞ q̇s = limt→∞ ėm =
limt→∞ ės = 0 (See [16]).

It is easy to see that
...
qm,

...
qs ∈ L∞. therefore the signal

q̈m, q̈s are uniformly continuous. Also as previously estab-

lished, limt→∞ q̇m = limt→∞ q̇s = 0, Invoking Barbalat’s

Lemma [17], limt→∞ q̈m = limt→∞ q̈s = 0.

Consequently, the closed loop system dynamics (11) im-

plies that
{

limt→∞ |q̃s(t − Ts(t)) − q̃m| = 0

limt→∞ |q̃m(t − Tm(t)) − q̃s| = K−1
p Ke limt→∞ q̃s.

(23)

Using the fact that q̃i(t − Ti(t)) = q̃i −
∫ t

t−Ti(t)
q̇i dt and

limt→∞ q̇m = limt→∞ q̇s = 0, we have that
{

limt→∞ |q̃s − q̃m| = 0

limt→∞ |q̃m − q̃s| = K−1
p Ke limt→∞ q̃s.

(24)

The above equations imply that limt→∞ q̃m = 0,

limt→∞ q̃s = 0. Then the origin of the system q̇m, q̇s,

q̃m, q̃s are asymptotically stable and limt→∞ qm(t) = q̄m,

limt→∞ qs(t) = q̄s.

The above result only guarantees stability of the teleoperation

system. In the next result, we discuss the force reflection and

position coordination abilities.

Corollary 1: Consider the nonlinear teleoperation de-

scribed by (11) with Assumptions 1-3. Then for range of

the control gain (12), we have following items,

1) The static force reflection is achieved as follows

Fop = Kp(q̄m − q̄s) = Keq̄s = Fenv. (25)

Therefore Control Objective 2 is achieved.

2) If Fop = Fenv = 0, the position coordination error qE

in (6) goes to zero. Therefore Control Objective 3 is

achieved.

Proof:

1) From Theorem 1, limt→∞ q̇m = limt→∞ q̇s =
0, limt→∞ qm = q̄m, limt→∞ qs = q̄s. Thus the

operational force (2) and environmental force (3) can

be rewritten as
{

Fop = Kp(q̄m − q̄s) = Keq̄s

Fenv = Keq̄s = Kp(q̄m − q̄s).
(26)

The above equation can be written as (25).

2) If Fop = Fenv = 0 , the equations (25) can be written

as q̄m−q̄s = 0. This implies that the equilibrium points

of the master and slave are identical. Then position

coordination error qE go to zero as limt→∞ qE(t) =
limt→∞(qm(t) − qs(t)) = 0.

B. Control Law without Time Varying Gain

The proposed Control Law 1 in previous section has the

time varying gains depending on Ṫm and Ṫs, and requires

their measurement. Here we assume for the delay function

Tm(t) and Ts(t) as follows

Assumption 4: Tm(t) and Ts(t) is continuously differen-

tiable functions and satisfy as follows

0 ≤ Ti(t) ≤ T+
i < ∞, |Ṫi(t)| < T ∗ < 1, i = m, s (27)

where T ∗ ∈ R are upper bounds of the rate of change of

the communication delays. Moreover, the upper bound of the

round-trip communication delay T+
ms = T+

m + T+
s and the

upper bound of the rate of the communication delay T ∗ are

known preliminarily.

Under above assumption we propose new control law which

not require the measurements of Ṫi as follows

Control Law 2
8

>

>

>

<

>

>

>

:

fim(t) = Kd {q̇s(t − Ts(t)) − q̇m(t)}

− {Dd + Dp} q̇m(t) + Kp {qs(t − Ts(t)) − qm(t)}

fis(t) = Kd {q̇m(t − Ts(t)) − q̇s(t)}

− {Dd + Dp} q̇s(t) + Kp {qm(t − Tm(t)) − qs(t)}

(28)

where Kd,Dd,Dp,∈ Rn×n are positive diagonal constant
matrices. Then substituting (2), (3), (28) and (9) into (1) and
assembling by (10), the closed loop systems can be described
as

8

>

>

>

>

>

<

>

>

>

>

>

:

Mmq̈m + Cmq̇m = Kd {q̇s(t − Ts(t)) − q̇m}

− {Dd + Dp} q̇m + Kp {q̃s(t − Ts(t)) − q̃m}

Msq̈s + Csq̇s = Kd {q̇m(t − Tm(t)) − q̇s}

− {Dd + Dp} q̇s + Kp {q̃m(t − Tm(t)) − q̃s}

− Beq̇s − Keq̃s

(29)

The following theorem describe stability properties of the

closed loop teleoperation with Control Law 2 as (29).

Theorem 2: Consider the nonlinear teleoperation de-

scribed by (11) with Assumptions 1,3 and 4. Then for range

of the control gain Kp and Kd as follows

Kp <
2

T+
ms

Dp, Kd ≤
2(1 − T ∗)

T ∗
Dd (30)
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the origin of the system q̇m, q̇s, q̃m, q̃s are asymptotically

stable and limt→∞ qm(t) = q̄m, limt→∞ qs(t) = q̄s.

therefore the Control Objective 1 is achieved.
Proof: This result is shown in the same arguments as

in the proof of Theorem 1 by using the following positive
function.

V2(x) = q̇T
m(t)Mm(qm)q̇m(t) + q̇T

s (t)Ms(qs)q̇s(t)

+ {q̃m(t) − q̃s(t)}T Kp {q̃m(t) − q̃s(t)} + q̃T
s (t)Keq̃s(t)

+
1

1 − T ∗

Z t

t−Tm(t)
q̇T

m(ξ)Kdq̇m(ξ)dξ

+
1

1 − T ∗

Z t

t−Ts(t)
q̇T

s (ξ)Kdq̇s(ξ)dξ (31)

It is to be noted that the position coordination abilities in free

space and static force reflection abilities are easy to show by

following Corollary 1. Then Control Objective 3 and Control

Objective 2 are also achieved by using Control Law 2.

Remark 1: From 1) of Corollary 1, the P-control gain

Kp in (7) and (28) determines the (static) force-reflection

performance where it specifies how much force is generated

for a given master-slave position errors. Furthermore (9) can

be rewritten as
{

q̄m = (K−1
e + K−1

p )F̄op

q̄s = K−1
e F̄op.

(32)

This imply that the P-control gain Kp also determines the

(static) position error in contact with the environment. Note

also that large dissipation gain Dp in (7) and (28) would

make the system response sluggish and deteriorates the

operationability. Then the control gain should be designed

with considering trade-off between “the operationability” and

“the force reflection and the position error”.

Remark 2: The Control Law 1 and 2 in (7) and (28) are

independent of the robot models (1), the operator (2) and

the environment (3). Furthermore the stability of the system

is also independent of the environmental parameter Be and

Ke and the operator input F̄op from Theorem 1 and 2. Thus,

our proposed control strategies guarantee robustness for the

parameter uncertainties of the above mentioned parameter.

V. EVALUATION BY CONTROL EXPERIMENTS

In this section, we verify the efficacy of the proposed

teleoperation methodology. The experiments were carried out

on a pair of identical direct-drive planar 2 links revolute-

joint robots as shown in Fig. 2. The inertia matrices and the

Coriolis matrices are identified

Mm = Ms =

[

θ1 + 2θ3 cos(q2) θ2 + θ3 cos(q2)
θ2 + θ3 cos(q2) θ2

]

,

Cm = Cs =

[

−θ3 sin(q2)q̇2 −θ3 sin(q2)(q̇1 + q̇2)
θ3 sin(q2)q̇1 0

]

,

where θ1 = 0.3657[kgm2], θ2 = 0.0291[kgm2] and

θ3 = 0.0227[kgm]. A remote environment is using a hard

aluminum wall covered by a rubber on the slave side as

shown in Fig. 2. We also measure the operational and

the environmental torque (i.e. Fenv,Fop in (1)) using the

force sensors. For implementation of the controllers and

Slave robot

Environment

Master robot

Fig. 2. Experimental setup

communication line, we use a dSPACE system (dSPACE

Inc.) and 2.5 [ms] sampling rate is obtained. All experiments

have been done with artificial time varying communication

delays as

Tm(t) = 0.1 sin 4t + 0.3, Ṫm(t) = 0.4 cos t

Ts(t) = 0.2 sin 4t + 0.3, Ṫs(t) = 0.8 cos t

Hence, the upper bound of the round-trip delay in commu-

nication is T+
ms = 0.9[s] and upper bound of the rate of

change of delay is T ∗ = 0.8. In this paper, we verify only

the Control Law 1 due to space constraints. The controller

parameters Kd, Dp and Kp are selected as

Kd =

[

3 0
0 1.5

]

, Kp =

[

13.3 0
0 5.5

]

, Dp =

[

6 0
0 2.5

]

.

Two kind of experimental conditions are given as follows.

Case 1: The slave moves without any contact.

Case 2: The slave moves in contact with environment.

All experimental results show that the stability is guaran-

teed for time varying communication delays and any human

inputs as Figs. 3-5. Fig. 3 shows the results of Case 1. The

joint angles of the slave accurately track those of the master

and the master-slave position coordination is achieved. Figs.

4-5 show the results of Case 2. When the slave robot is

pushing the environment (5-28 [sec]), the contact torque is

faithfully reflected to the operator. The operator can perceive

the environment through the torque reflection. When the

slave does not contact with environment and the operator

force is negligible (30-40[sec]), the master-slave position

coordination can be achieved. In Fig. 5, there are some small

errors in the force responses, but it is seems to be due to the

substantial device static friction of robots. These errors were

not observed when a simulation without such a friction is

performed.

VI. CONCLUSIONS

In this paper, we proposed the novel bilateral control

strategies for nonlinear teleoperation with time varying de-

lays. The proposed framework used the simple PD-type

controllers with time varying gains and without time vary-

ing gains. Using Lyapunov-Krasovskii function, the delay-

dependent stability of the origin was shown for the ranges of

gains. Furthermore the proposed strategies achieved master-

slave position coordination and bilateral static force reflec-

tion. Several experimental results showed the effectiveness

of our proposed framework.
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APPENDIX

A. The detector of the rate of change of delay

The rate of change of delay can be detected as shown in

Fig. 6. The ramp function as r(t)( ṙ(t) = 1) is transmitted

from sender to receiver through the communication line. On

receiver side, delayed signal is differentiated. Thus it is easy

to detect the rate of change of delay as follows,

Ṫ (t) = −

[

d

dt
{r(t − T (t))}

]

+ 1. (33)

T (t)
i

r(t) r(t-T (t))
i

dt

d
T (t)
i

Communication 

        line
Sender side Receiver side

Fig. 6. The detector of the rate of change of delay
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