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Abstract

This paper deals with formation control strategies based on Virtual Structure (VS) for multi-vehicle systems. We
propose several control laws for networked multi-nonholonomic vehicle systems in order to a¢Bievasensus

VS Flockingand VS Flockingwith collision avoidance. First, Virtual Vehicle for the feedback linearization is
considered, and we propose VS consensus and Flocking control laws based on a virtual structure and consensus
algorithms. ThenVS Flockingcontrol law considering collision avoidance is proposed and its asymptotical
stability is proven. Finally, simulation and experimental results show the effectiveness of the proposed approaches.
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1 Introduction 2 Multi-vehicle systems

Recently there have been a lot of progress for newA plant is the networked multi-vehicle systems which
theories that create fusions of graph theories andonsists N vehicles asN agents under following
control theories for cooperative control problems ofassumption.

distributed networked systems[l]. A multi-agent ) ) )

control problem is one of significant topics where ASSumption 1 There are an information network
each agent works autonomously by using informatiorP€tween anyth vehicle andjth vehicle ¢ 7 ;).

of other agents over the communication network. In

the multi-agent systems, consensus means that sharédaph theory is a useful to represent network
information of agents converge to a common constangtructures. The network structure with Assumption lis
value and the problem is main topic of the systemsconnected graph if it has bidirectional communications,
Consensus algorithm using graph theory is studied a@r strongly connected digraph if it has unidirectional
a control problem of multi-agent systems in [2, 3]. communications. In this paper, we use graph Laplacian
Formation control problems are expected at variougor network structures expressed mathematically.
fields, e.g. satellites, airship, intelligent transportGraph Laplaciarl = [l;;] consists of;; = >_,; a;;,
systems and load carriage. The consensus problendls = —aij , i # j if a;; = 1 that meansjth
can be applied to formation control for multiple Vehicle send some informationith vehicle, otherwise
vehicles which are essential for high-efficiency [4, 5,ai; = 0.

6, 7]. A vehicle is generally a nonholonomic system )

and it has velocity constraint that its wheels canno2.1 Vehicle Model

move side-away. Many research results for formationrhe vehicle model that is considered in this paper is
control of nonholonomic systems have been reporteq two-wheeled vehicle as shown in Fig.1 (lower left).
[4, 5, 8]. Consensus problems with collision avoidancéye assume thaV vehicles can be identical models and

for multi-agent systems have been discussed in [4riction force is ignored in the models. The kinematics
5, 6]. However the control law could not achieve ymodel ofith vehicle is described as

desired formation because it dose not consider control
of relative position. In [7], a control law which can

construct any formations, was proposed for multi-agent i cos gl 0 ;
systems. However it is difficult to apply it for general Yi | = | sind; 0 wi | 1)
nonholonomic vehicle control systems. On the other 0 0 1

hand, a control law that makes any formation using

deviation model was proposed in leader-follower typesyhere(z;, ;) are the positions of center of gravity of
but it had no information exchange among agents [8]. jth vehicle,d; is a heading angle ath vehicle and;

In this paper, we construct multi-agent systems byand ., are the control inputs. It is well known that

using virtual structure and propose a formation controbpove vehicle models have constraint on its velocity as
law using information of other agents. Finally, we

extend a formation control law with collision avoidance o )
and the effect of the proposed control laws are ~ ZiSll 0i — gicos; = 0. )
evaluated via control simulations and experiments.

Therefore these vehicles are nonholonomic systems.
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3.1 Control Objectives

To converge to a common value for VV of each vehicle,
It is necessary to guarantee consensus for positions of
center of gravity and heading angle of VVs as

LTri = Trjy Yri — Yrj, 9'ri - erj (t - OO) (6)

Yosing, This consensus is call&dS consensus
Figure 1: ith Real Vehicle and its Virtual Vehicle

Lemma 1 Consider theN x N graph LaplacianL

v : .
L e B \c/jwth s'ttr)or&gly connected digraph. If the systems can be
- Il
| ) : escribed as
b k= ':
' Vehicle2 \ ' T = *me (7)
Sy, |
Vehicle 4 ledeys/,,/ Vehicle 1 wherer = [m{:ﬂg Ce l’%]T c RN™ gre the state of all
________ R systems and.,, = L ® I,,, , the stater converge as
[ o/
. z— (@) © Ln)z(0) = 1@ a (t — o), (8)

Figure 2: Position of VSs
where z,.1, 2;; are right and left eigenvector of zero
2.2 Virtual Structure (VS) eigenvalue ofL with 2] z,; = 1 andz]j1 = 1, ®
denotes Kronecker produet, € R™ is consensus value

We consider Virtual Structure (VS) using Virtual andl=[11--- 1]T € RN [3].

Vehicle (VV) [8] for each vehicle as shown in Fig.1
(upper right). By the positional relationship between
vehicle and VV in Fig.1, the kinematics model ah
VV is described as

Proof 1 See [3] for proof.

From Lemma 1, the all of states converge to a common

valuex as
Toi i + Tg; cos; — yg; sin b;
ZG/M: = Z/i+$dismzz:+ydz‘€089i )] Tl=Iy= - =IN=aq. (9)
T 1

where ,;, y-;) are positions of center of gravity of 3.2 Control Law for VS Consensus

ith VV, 6,; is heading angle ofth VV andz;, y4; are  To achieveVS consensusve propose the following
distance between VVs and vehicles. The derivative ofontrol law 1 for the vehiclé as
(3) are given by

Control law 1
07’i 0 ' JEN;
where
B, costl; —xg;sinb; — yq; cosd; (4) whereu; = [v; wi]T, 7 = [0 yri)T, N is ith
‘ sinf; xg;cosf; —yqisinb; |’ neighbor set;; € R? is constant reference velocity
By = [ 0 1 ] . (5) andk > 0 is controller gain.

Theorem 1 Consider a system of th¥ vehicles with
kinematics (4) and Control Law 1 (10). If the
Assumption 1 and; # 0 are satisfied, then VS
consensus achieves asymptotically.

In this kinematics modelB; is nonsingular matrix if
zq; # 0. In this paper, we consider formation control
problems for these VS systems (4).

3 VS Consensus Problems , ,
. ) Proof 2 All of the VS systems (4) without its angle
The goal of formation control problems is th& 51 pe written as

vehicles preserve any formation based on information

exchange between them over the network. To maintain N

any formations, the VVs of each vehicle has to Fo= @ ZB”" (11)
converge to a common position as shown in Fig.2. P
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wherer = [rT' vl . 73T, u = [T I .- w%])T, 3.3 Control Law with Velocity Tracking
@Y.~ | B, is matrix that diagonal block elements are for VS Consensus

B;. The Control law 1 (10) can be written as The Control laws 1 and 2 include feedforward terms
which are reference signafs,. In case of physical
N . ] vehicles, the motion of vehicles are not exactly same
u=@Y B (~kLar +1®74q). (12)  petween them. Therefore, the error of velocities €
i=1 7;) do not converge t6. Consequently we propose new

) control law with velocity control foith vehicle as
Letr. = r — 1 ® ry4, then we get the following from

(11) and (12), Control law 3

e = —kL ore. (13)
Upi = 0 — kyr(vrg — 0) (18)

re > 1®a (t — oo0). Hence, we can conclude that

By Lemma 1, the systems (13) achieve consensus as _
y y (13) u = B (k > ((Tifrm')*( jrrj))+vm'>
the positions of VVs converge to a common value as

JEN;

(14) wherev* is constant reference velocity aikd, > 0 is

rolefatr) (8= o0) controller gain

The consensus for is achieved asr; — r; —
a + rq. Next, we consider heading anglés of VVs.
Substituting Control law 1 (10) int@d,; in (4) and
considering’q = [v4 cos 64 vgsin 64T, we get

Theorem 3 Consider a system of th¥ vehicles with
kinematics (4), and Control law 3 (18). If Assumption
1 andv* # 0 are satisfied, then VS consensus achieves
asymptotically.

b = ——L sin(6,; — 0,). (15) L , ,
Tdi Proof 4 Substituting Control law 3 (18) into thé&h

vehicle kinematics (4), we get that

Hence, we have tha&.; — 0, (t — co). Therefore VS
consensus is achieved asymptomatically. Furthermore, . - X
the any formations can be shaped. o= 1@ —ky(or —1807)
T = —kLof +v,. (29)
B, is nonsingular matrixB[1 exists and Control Law

1 can be applied. Then, the vehicles can make anXJ
formations when VVs converge to a common value. By
selecting the distance of VV&:{;, y4;) appropriately

as shown in Fig.2, the vehicles achieve any formation [ o } [ —kL ., L ] { r. } (20)

singu,.. = v, —1v*, r, =7 — f(f 1 ®v*dr,

shapes. The Control law 1 can be extended and the

H : . . . 0 _kv'r‘IZN
vehicles can achieve any formations even if distances
for VVs are same as

re v'r‘e

By Lemma 1, the systems (20) achieve consensus and

Tl = Tdo = = TaN, Ydl = Ydz = = YaN velocity errorsr, converge td) as

(16)

We propose the new control law for thth vehicle as re > 1®@a vre =0 (21)

Control law 2 Therefore any formation shape is guaranteed.

ui = B! ("C Z/:v (i =) = g =705)) + 74 4 VS Flocking Problems
JEN;
17) 4.1 Control Objectives
Flocking is defined that velocity and inter-vehicle

wherer,; is reference relative position tq. distances converge to common value. It could be as
Theorem 2 Consider a system of th¥ vehicles with
kinematics (4) and Control Law 2 (17). Under P 22)

i J

assumption 1 and; # 0, VS consensus achieves
asymptotically.
VS consensyzoblem considers only relative positions

Proof 3 This can be proven in a same way with between Vehi‘?'es- .Here, we discu.‘y:S qugking
Theorem 1. problems that is considered both relative positions and
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relative velocities between VVs. The velocities is
defined as;,; = [v,; vy;]7. Then itis expressed as

Vpi = g, T = Upg, (23) Ur

[ f }:tlirﬁ.zSexp<Jt>s-l®12[ #(0) ]
)

— (Wil +wvdt + worl) 5 { ;"((%) }
wherea; is control input. T
(28)
4.2 Control Law for VS Flocking
. . The each vector is written as

The following control law is proposed
Control law 4 W1={é],w2={2},v1={g}7uz=[g},

i = — Z ki (75 — 7) + ko (vri — vrj)) where0 = [0 0---0]T € RV, p is eigenvector of

JEN: A(—L,) =0andp’1 = 1. Then, we get
u, = B l'v, (24)

<

o] e

wherek,, k; > 0 are controller gains.

Therefore VS Flocking is achieved asymptotically.
Theorem 4 Consider a system of th¥ vehicles with
kinematics (4) and Control law 4 (18). Then VS, 3 contro] Law with Collision Avoidance
Flocking achieves asymptotically if assumption 1 and for VS Elocki
1 > |1 + 4/(k2\)| are satisfied, where\; are or ocking
eigenvalues of weighted graph Laplaciap including  From Theorem 4, the formation shape was guaranteed
k;, andv; — v; # 0. in VS Flockingproblem. However, in case of physical
vehicles, the collision avoidance is also important
] ] ) ] problem. It is well known that artificial potential
Proof 5 The control input,. for multi-vehicle systems  5nnr0ach is effective to avoid collision[4]. The artificial

can be written as potential gives repulsive force to other vehicles if a
vehicle come close to other vehicles. Here, we use
O = — Loy o — kyLup 20y (25) following artificial potential function [4]

d
By B; !, the position coordinate of VS system (4) U; = Z Uij, Ug; = Tl +log ||ri;ll,  (30)
can be also described as (23). Therefore, if flocking JEN; 4
problem achieve in second order system (23), VS

systems with (4) achieve VS flocking problem. By (23\vherer;; = r; —r; andd is controller gain. We have to

and (25), we have following result selectd that satisfied > 2(,/22; + y2,+R,) whereR,
is the largest radius of the vehicles. Then we propose
3 T ; following control law with collision avoidance as
Pl Y I e | T (e
Ur 7Lw *kva
Control law 5
b
¥ has 2 zero eigenvalues. Selectigto satisfy as Ui = U g
U; = B;lvm‘ (31)
1> (14 4/(k2N)), (27)  Wwhere
uf® = 0 = kyr (v — ") (32)
where \;is ith eigenvalue of-L,,, All of eigenvalues -y kz<(7°z —7) + ko (vri — Urj))
without zero have negative real parts [7]. Finally, we JEN:
consider time response of (26) and transfofno 3 = ca _  _\. U (s — s 33
S.JS~! whereJ is Jordan form composed of any vector i Ui Z ilers = vry) (33)
—1 T JeNi
ass = [wl w2 "'WQN],S = [Vl 12 "'VQN]

w1, Vo are right and left eigenvector & to A\(X) = 0. _ )

ws, vy are vectors thatw, = wy, IS = 1. The wherek,,, k, k; > 0 are controller gain. (32) is the

state of multi-vehicle at — oo is expressed as, control low to achieve consensus and (33) is the control
law to achieve collision avoidance.
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Theorem 5 Consider a system of th¥ vehicles with
kinematics (4) and Control law 5 (31). Then VS

Flocking achieves asymptotically if assumption 1 and

assumption of the bidirectional communication for
the network andk,, + kyA2 — frael||Lwel > 0
are satisfied, where\, is the smallest eigenvalue of
L., without zero eigenvalue and,,., iS maximum
potential force of and™* # 0.

Proof 6 Letv, = v, — 1 ® v*, then the control input
0, for multi-vehicle systems is written as

*kvrve - Lw.QT - kva.QUe

— D Z Vri Ui‘Lw.Qve‘
i

Ve

(34)

where® >, V,,U; is matrix that the diagonal block
element arév,..U;. Now, we define the functidn for
the system as

1
V(z) = 5(veTue + T Ly, o7) > 0.

(39)

where z [ve, 7] Because of network
structure of multi-vehicle systems with bidirectional

digraph o

99
OO
line graph

Figure 3: Graph structure  Figure 4: Formation

——\ehiclel
= = = vehiclez

= = vehicles
= = = vehicles
vehicles

E -2 0 2 2E

-25 -1.5 -1 -0.5 0.5 1 £3
Figure 5: Trajectory of five vehicles\(S consensiis
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5.1 VS Consensus Problems

We verify the Control law 2 (10). The parameter for VS
and control law are selected As= 0.5. The reference
velocities are'; = [0.1 cos(/2) 0.1sin(r/2)]T. Fig.5
shows the trajectory of the vehicles. From this result,

communication can be represented undirected grapht.he vehicles achieve desired formation and the position

Then we have that,, » = LI ,. The derivative of this
function along trajectories of th& are given by

: T X T.
V =177 Lyof + v, Ve

S *(kvr + kv)\Q - fnLaxHLw.2||)||UeH27 (36)

where )\, is smallest eigenvalue df,, without zero
eigenvalue andf,,., is maximum potential force.
Choosing

kvr + kv)\Q - fmaxHLwQH > 07 (37)

the V is negative semi-definite. Furthermorg, =
0 is satisfied by only, 0. Applying LaSalle’s
invariant principle, we can see that converge ta0

of VVs converge to a common value.
5.2 VS Flocking Problems

The Control law 4 (24) is examined. The parameters
for VS and control law are selected ds
0.1 and k, 1. The reference velocities are
7q = [0.1cos(7/2) 0.1sin(w/2)]T. Fig.6 shows the
trajectory of the vehicles and Fig.7 shows the velocity
errors between VVs. From these results, the vehicles
achieve formation and the position and velocity of VVs
converge to a common value.

5.3 VS Flocking Problems with C. A.

We verify the proposed Control law 5 (31). A group of
5 vehicles that has the network structure of line graph
is considered as shown in Fig.3(lower). The parameter
for VS are selected as;; = 0.05, yq; = 0, i.e. the
distances of VVs is a common value. The parameter

asymptotically. Therefore, the consensus is achieved &gy control low are selected ds, = 1, k, = 2, k; =

v — v*. Furthermore, we can see that
(38)

1'}7« = —Lw_QT =0

Therefore,”; — 7;. Thus, VS Flocking with collision
avoidance is achieved asymptotically.

5 Simulations

0.3. The parameter for collision avoidance function
is selected agd = 0.3 by reason of the largest radius
of the physical vehicles i®, = 0.08. The reference
velocities arev* = [0.1 3]7. The desired formation
structure is shown in Fig.4.Fig.8 shows simulation
results in case with collision avoidance and without
collision avoidance asi{* = 0. This shows that
vehicles achieve formation with collision avoidance.

6 Experiments

Consider a group of 5 vehicles that has networkwe verify the efficacy of the proposed control laws
structure as shown in Fig.3 (upper). Fig.4 shows then experiments forVS consensuproblem andVS

desired formation and distances of VS.
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on 2 vehicles as shown in Fig.9. We use the dSPACE
real-time calculating machine and 0.2 [s] sampling rate
is obtained because of the delay in wireless network. 8

6.1 VS Consensus Problem
The proposed Control law 3 (18) fMfS consensuis

verified first. The parameter for VS and control law

are selected asy; = xg2 = 0.5, Yyg1 = Yao =
0, 71 = [0 0157, r = [0 — 0.15]7, kyr =
0.02, £ = 1. The initial conditions areR,(0) =
[0.27 0.18 0], Ry(0) = [0.27 — 0.18 0]T. The
reference velocities are; = [0.07 0]7. Fig.10 shows

a

Vehicle

Figure 9: Experimental setup

—— experiment
- simulation

0 05 1 X 15 2 2E
Figure 10: Trajectory of two vehicles\(S consensiis

03 . . .
— experiment |
= = simulation

Vehicle 2

Vehicle 1

I I I I |
0 0.5 1 15 2 28

. :
Figure 11: Trajectory of two vehicles (VS Flocking)

7 Conclusions

In this paper, we proposed the formation control
methods for networked multi-vehicle systems using
virtual structure. Our proposed control laws can
achieve desired formations for nonholonomic systems.
We proved asymptotic stability for these control
strategies. Experimental and simulation results
emonstrated the effectiveness of our approaches.
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