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Abstract
This paper deals with formation control strategies based on Virtual Structure (VS) for multi-vehicle systems. We
propose several control laws for networked multi-nonholonomic vehicle systems in order to achieveVS consensus,
VS Flockingand VS Flockingwith collision avoidance. First, Virtual Vehicle for the feedback linearization is
considered, and we propose VS consensus and Flocking control laws based on a virtual structure and consensus
algorithms. Then,VS Flockingcontrol law considering collision avoidance is proposed and its asymptotical
stability is proven. Finally, simulation and experimental results show the effectiveness of the proposed approaches.

Keywords: Formation Control, Networked Multi-Vehicle System, Nonholonomic System, Virtual Structure

1 Introduction
Recently there have been a lot of progress for new
theories that create fusions of graph theories and
control theories for cooperative control problems of
distributed networked systems[1]. A multi-agent
control problem is one of significant topics where
each agent works autonomously by using information
of other agents over the communication network. In
the multi-agent systems, consensus means that shared
information of agents converge to a common constant
value and the problem is main topic of the systems.
Consensus algorithm using graph theory is studied as
a control problem of multi-agent systems in [2, 3].
Formation control problems are expected at various
fields, e.g. satellites, airship, intelligent transport
systems and load carriage. The consensus problems
can be applied to formation control for multiple
vehicles which are essential for high-efficiency [4, 5,
6, 7]. A vehicle is generally a nonholonomic system
and it has velocity constraint that its wheels cannot
move side-away. Many research results for formation
control of nonholonomic systems have been reported
[4, 5, 8]. Consensus problems with collision avoidance
for multi-agent systems have been discussed in [4,
5, 6]. However the control law could not achieve
desired formation because it dose not consider control
of relative position. In [7], a control law which can
construct any formations, was proposed for multi-agent
systems. However it is difficult to apply it for general
nonholonomic vehicle control systems. On the other
hand, a control law that makes any formation using
deviation model was proposed in leader-follower types,
but it had no information exchange among agents [8].
In this paper, we construct multi-agent systems by
using virtual structure and propose a formation control
law using information of other agents. Finally, we
extend a formation control law with collision avoidance
and the effect of the proposed control laws are
evaluated via control simulations and experiments.

2 Multi-vehicle systems
A plant is the networked multi-vehicle systems which
consistsN vehicles asN agents under following
assumption.

Assumption 1 There are an information network
between anyith vehicle andjth vehicle (i ̸= j).

Graph theory is a useful to represent network
structures. The network structure with Assumption 1 is
connected graph if it has bidirectional communications,
or strongly connected digraph if it has unidirectional
communications. In this paper, we use graph Laplacian
for network structures expressed mathematically.
Graph LaplacianL = [lij ] consists oflii =

∑

j ̸=i aij ,
lij = −aij , i ̸= j if aij = 1 that meansjth
vehicle send some information toith vehicle, otherwise
aij = 0.

2.1 Vehicle Model

The vehicle model that is considered in this paper is
a two-wheeled vehicle as shown in Fig.1 (lower left).
We assume thatN vehicles can be identical models and
friction force is ignored in the models. The kinematics
model ofith vehicle is described as





ẋi

ẏi

θ̇i



 =





cos θi 0
sin θi 0

0 1





[

vi

ωi

]

, (1)

where(xi, yi) are the positions of center of gravity of
ith vehicle,θi is a heading angle ofith vehicle andvi

and ωi are the control inputs. It is well known that
above vehicle models have constraint on its velocity as

ẋi sin θi − ẏi cos θi = 0. (2)

Therefore these vehicles are nonholonomic systems.
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Figure 2: Position of VSs

2.2 Virtual Structure (VS)

We consider Virtual Structure (VS) using Virtual
Vehicle (VV) [8] for each vehicle as shown in Fig.1
(upper right). By the positional relationship between
vehicle and VV in Fig.1, the kinematics model ofith
VV is described as





xri

yri

θri



 =





xi + xdi cos θi − ydi sin θi

yi + xdi sin θi + ydi cos θi

θi



 . (3)

where (xri, yri) are positions of center of gravity of
ith VV, θri is heading angle ofith VV andxdi, ydi are
distance between VVs and vehicles. The derivative of
(3) are given by





ẋri

ẏri

θ̇ri



 =

[

Bi

Bθ

] [

vi

ωi

]

,

where

Bi =

[

cos θi −xdi sin θi − ydi cos θi

sin θi xdi cos θi − ydi sin θi

]

, (4)

Bθ =
[

0 1
]

. (5)

In this kinematics model,Bi is nonsingular matrix if
xdi ̸= 0. In this paper, we consider formation control
problems for these VS systems (4).

3 VS Consensus Problems
The goal of formation control problems is thatN
vehicles preserve any formation based on information
exchange between them over the network. To maintain
any formations, the VVs of each vehicle has to
converge to a common position as shown in Fig.2.

3.1 Control Objectives

To converge to a common value for VV of each vehicle,
It is necessary to guarantee consensus for positions of
center of gravity and heading angle of VVs as

xri → xrj , yri → yrj , θri → θrj (t → ∞). (6)

This consensus is calledVS consensus.

Lemma 1 Consider theN × N graph LaplacianL
with strongly connected digraph. If the systems can be
described as

ẋ = −L.mx (7)

wherex = [xT
1
xT

2
· · ·xT

N ]T ∈ RNm are the state of all
systems andL.m = L ⊗ Im , the statex converge as

x → (xr1x
T
l1 ⊗ Im)x(0) = 1 ⊗ α (t → ∞), (8)

wherexr1, xl1 are right and left eigenvector of zero
eigenvalue ofL with xT

l1xr1 = 1 and xT
l11 = 1, ⊗

denotes Kronecker product,α ∈ Rm is consensus value
and1 = [1 1 · · · 1]T ∈ RN [3].

Proof 1 See [3] for proof.

From Lemma 1, the all of states converge to a common
valueα as

x1 = x2 = · · · = xN = α. (9)

3.2 Control Law for VS Consensus

To achieveVS consensus, we propose the following
control law 1 for the vehiclei as

Control law 1

ui = B−1

i

(

−k
∑

j∈Ni

(ri − rj) + ṙd

)

, (10)

where ui = [vi ωi]
T , ri = [xri yri]

T , Ni is ith
neighbor set,ṙd ∈ R2 is constant reference velocity
andk > 0 is controller gain.

Theorem 1 Consider a system of theN vehicles with
kinematics (4) and Control Law 1 (10). If the
Assumption 1 anḋrd ̸= 0 are satisfied, then VS
consensus achieves asymptotically.

Proof 2 All of the VS systems (4) without its angleθri

can be written as

ṙ = ⊕
N

∑

i=1

Biu, (11)
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wherer = [rT
1

rT
2

· · · rT
N ]T , u = [uT

1
uT

2
· · · uT

N ]T ,
⊕

∑N
i=1

Bi is matrix that diagonal block elements are
Bi. The Control law 1 (10) can be written as

u = ⊕
N

∑

i=1

B−1

i (−kL.2r + 1 ⊗ ṙd) . (12)

Let re = r − 1 ⊗ rd, then we get the following from
(11) and (12),

ṙe = −kL.2re. (13)

By Lemma 1, the systems (13) achieve consensus as
re → 1 ⊗ α (t → ∞). Hence, we can conclude that
the positions of VVs converge to a common value as

r → 1 ⊗ (α + rd) (t → ∞). (14)

The consensus forr is achieved asri → rj →
α + rd. Next, we consider heading anglesθri of VVs.
Substituting Control law 1 (10) intȯθri in (4) and
consideringṙd = [vd cos θd vd sin θd]

T , we get

θ̇ri = − vd

xdi
sin(θri − θd). (15)

Hence, we have thatθri → θd (t → ∞). Therefore VS
consensus is achieved asymptomatically. Furthermore,
the any formations can be shaped.

Bi is nonsingular matrix,B−1

i exists and Control Law
1 can be applied. Then, the vehicles can make any
formations when VVs converge to a common value. By
selecting the distance of VVs (xdi, ydi) appropriately
as shown in Fig.2, the vehicles achieve any formation
shapes. The Control law 1 can be extended and the
vehicles can achieve any formations even if distances
for VVs are same as

xd1 = xd2 = · · · = xdN , yd1 = yd2 = · · · = ydN
(16)

We propose the new control law for theith vehicle as

Control law 2

ui = B−1

i

0

@−k
X

j∈Ni

“

(ri − rri) − (rj − rrj)
”

+ ṙd

1

A

(17)

whererri is reference relative position tori.

Theorem 2 Consider a system of theN vehicles with
kinematics (4) and Control Law 2 (17). Under
assumption 1 anḋrd ̸= 0, VS consensus achieves
asymptotically.

Proof 3 This can be proven in a same way with
Theorem 1.

3.3 Control Law with Velocity Tracking
for VS Consensus

The Control laws 1 and 2 include feedforward terms
which are reference signalṡrd. In case of physical
vehicles, the motion of vehicles are not exactly same
between them. Therefore, the error of velocities (ṙd −
ṙi) do not converge to0. Consequently we propose new
control law with velocity control forith vehicle as

Control law 3

v̇ri = v̇∗ − kvr(vri − v∗) (18)

ui = B−1

i

0

@−k
X

j∈Ni

“

(ri − rri) − (rj − rrj)
”

+ vri

1

A

wherev∗ is constant reference velocity andkvr > 0 is
controller gain.

Theorem 3 Consider a system of theN vehicles with
kinematics (4), and Control law 3 (18). If Assumption
1 andv∗ ̸= 0 are satisfied, then VS consensus achieves
asymptotically.

Proof 4 Substituting Control law 3 (18) into theith
vehicle kinematics (4), we get that

v̇r = 1 ⊗ v̇∗ − kv(vr − 1 ⊗ v∗)

˙̂r = −kL.2r̂ + vr. (19)

Usingvre = vr − 1 ⊗ v∗, re = r̂ −
∫ t

0
1 ⊗ v∗dτ ,

[

ṙe

v̇re

]

=

[

−kL.2 I2N

0 −kvrI2N

] [

re

vre

]

. (20)

By Lemma 1, the systems (20) achieve consensus and
velocity errorsre converge to0 as

re → 1 ⊗ α vre → 0 (21)

Therefore any formation shape is guaranteed.

4 VS Flocking Problems

4.1 Control Objectives

Flocking is defined that velocity and inter-vehicle
distances converge to common value. It could be as

ṙi → ṙj (22)

VS consensusproblem considers only relative positions
between vehicles. Here, we discussVS Flocking
problems that is considered both relative positions and
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relative velocities between VVs. The velocities is
defined asvri = [vxi vyi]

T . Then it is expressed as

v̇ri = ai, ṙi = vri, (23)

whereai is control input.

4.2 Control Law for VS Flocking

The following control law is proposed

Control law 4

v̇ri = −
∑

j∈Ni

ki

(

(r̂i − r̂j) + kv(vri − vrj)
)

ui = B−1

i vri, (24)

wherekv, ki > 0 are controller gains.

Theorem 4 Consider a system of theN vehicles with
kinematics (4) and Control law 4 (18). Then VS
Flocking achieves asymptotically if assumption 1 and
1 > |1 + 4/(k2

vλi)| are satisfied, whereλi are
eigenvalues of weighted graph LaplacianLw including
ki, andvi → vj ̸= 0.

Proof 5 The control inputv̇r for multi-vehicle systems
can be written as

v̇r = −Lw.2r̂ − kvLw.2vr. (25)

By B−1

i , the position coordinate of VS system (4)
can be also described as (23). Therefore, if flocking
problem achieve in second order system (23), VS
systems with (4) achieve VS flocking problem. By (23)
and (25), we have following result

[

˙̂r
v̇r

]

=

[

0 IN

−Lw −kvLw

]

︸ ︷︷ ︸

Σ

⊗I2

[

r̂
vr

]

(26)

Σ has 2 zero eigenvalues. Selectingkv to satisfy as

1 > |1 + 4/(k2

vλi)|, (27)

whereλiis ith eigenvalue of−Lw, All of eigenvalues
without zero have negative real parts [7]. Finally, we
consider time response of (26) and transformΣ to Σ =
SJS−1 whereJ is Jordan form composed of any vector
as S = [ω1 ω2 · · ·ω2N ], S−1 = [ν1 ν2 · · · ν2N ]T .
ω1, ν2 are right and left eigenvector ofΣ to λ(Σ) = 0.
ω2, ν1 are vectors thatΣω2 = ω1, ν

T
1

Σ = νT
2

. The
state of multi-vehicle att → ∞ is expressed as,

[

r̂
vr

]

= lim
t→∞

S exp(Jt)S−1 ⊗ I2

[

r̂(0)
vr(0)

]

→ (ω1ν
T
1

+ ω1ν
T
2

t + ω2ν
T
2

).2

[

r̂(0)
vr(0)

]

.

(28)

The each vector is written as

ω1 =

»

1
0

–

, ω2 =

»

0
1

–

, ν1 =

»

p
0

–

, ν2 =

»

0
p

–

,

where0 = [0 0 · · · 0]T ∈ RN , p is eigenvector of
λ(−Lw) = 0 andpT 1 = 1. Then, we get

[

r̂
vr

]

→
[

(1pT ).2r̂(0) + (1pT ).2v(0)t
(1pT ).2v(0)

]

(29)

Therefore VS Flocking is achieved asymptotically.

4.3 Control Law with Collision Avoidance
for VS Flocking

From Theorem 4, the formation shape was guaranteed
in VS Flockingproblem. However, in case of physical
vehicles, the collision avoidance is also important
problem. It is well known that artificial potential
approach is effective to avoid collision[4]. The artificial
potential gives repulsive force to other vehicles if a
vehicle come close to other vehicles. Here, we use
following artificial potential function [4]

Ui =
∑

j∈Ni

Uij , Uij =
d

∥rij∥
+ log ∥rij∥, (30)

whererij = ri−rj andd is controller gain. We have to
selectd that satisfiesd > 2(

√

x2

di + y2

di+Rv) whereRv

is the largest radius of the vehicles. Then we propose
following control law with collision avoidance as

Control law 5

v̇ri = uco
i + uca

i

ui = B−1

i vri (31)

where

uco
i = v̇∗ − kvr(vri − v∗) (32)

−
∑

j∈Ni

ki

(

(r̂i − r̂j) + kv(vri − vrj)
)

uca
i = −∇riUi|

∑

j∈Ni

ki(vri − vrj)| (33)

wherekvr, kv, ki > 0 are controller gain. (32) is the
control low to achieve consensus and (33) is the control
law to achieve collision avoidance.
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Theorem 5 Consider a system of theN vehicles with
kinematics (4) and Control law 5 (31). Then VS
Flocking achieves asymptotically if assumption 1 and
assumption of the bidirectional communication for
the network andkvr + kvλ2 − fmax∥Lw.2∥ > 0
are satisfied, whereλ2 is the smallest eigenvalue of
Lw without zero eigenvalue andfmax is maximum
potential force of andv∗ ̸= 0.

Proof 6 Let ve = vr − 1 ⊗ v∗, then the control input
v̇e for multi-vehicle systems is written as

v̇e = −kvrve − Lw.2r̂ − kvLw.2ve

−⊕
∑

i

∇riUi|Lw.2ve| (34)

where⊕
∑

i ∇riUi is matrix that the diagonal block
element are∇riUi. Now, we define the functionV for
the system as

V (x) =
1

2
(vT

e ve + r̂T Lw.2r̂) ≥ 0. (35)

where x =
[

ve, r̂
]T

. Because of network
structure of multi-vehicle systems with bidirectional
communication can be represented undirected graph.
Then we have thatLw.2 = LT

w.2. The derivative of this
function along trajectories of thėV are given by

V̇ = r̂T Lw.2
˙̂r + vT

e v̇e

≤ −(kvr + kvλ2 − fmax∥Lw.2∥)∥ve∥2, (36)

where λ2 is smallest eigenvalue ofLw without zero
eigenvalue andfmax is maximum potential force.
Choosing

kvr + kvλ2 − fmax∥Lw.2∥ > 0, (37)

the V̇ is negative semi-definite. Furthermore,V̇ =
0 is satisfied by onlyve = 0. Applying LaSalle’s
invariant principle, we can see thatve converge to0
asymptotically. Therefore, the consensus is achieved as
vri → v∗. Furthermore, we can see that

v̇r = −Lw.2r̂ = 0 (38)

Therefore,̂ri → r̂j . Thus, VS Flocking with collision
avoidance is achieved asymptotically.

5 Simulations
Consider a group of 5 vehicles that has network
structure as shown in Fig.3 (upper). Fig.4 shows the
desired formation and distances of VS.

1

2 3

4 5
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line graph

Figure 3: Graph structure
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Figure 5: Trajectory of five vehicles (VS consensus)

5.1 VS Consensus Problems

We verify the Control law 2 (10). The parameter for VS
and control law are selected ask = 0.5. The reference
velocities arėrd = [0.1 cos(π/2) 0.1 sin(π/2)]T . Fig.5
shows the trajectory of the vehicles. From this result,
the vehicles achieve desired formation and the position
of VVs converge to a common value.

5.2 VS Flocking Problems

The Control law 4 (24) is examined. The parameters
for VS and control law are selected aski =
0.1 and kv = 1. The reference velocities are
ṙd = [0.1 cos(π/2) 0.1 sin(π/2)]T . Fig.6 shows the
trajectory of the vehicles and Fig.7 shows the velocity
errors between VVs. From these results, the vehicles
achieve formation and the position and velocity of VVs
converge to a common value.

5.3 VS Flocking Problems with C. A.

We verify the proposed Control law 5 (31). A group of
5 vehicles that has the network structure of line graph
is considered as shown in Fig.3(lower). The parameter
for VS are selected asxdi = 0.05, ydi = 0, i.e. the
distances of VVs is a common value. The parameter
for control low are selected askvr = 1, kv = 2, ki =
0.3. The parameter for collision avoidance function
is selected asd = 0.3 by reason of the largest radius
of the physical vehicles isRv = 0.08. The reference
velocities arev∗ = [0.1 π

2
]T . The desired formation

structure is shown in Fig.4.Fig.8 shows simulation
results in case with collision avoidance and without
collision avoidance asuca

i = 0. This shows that
vehicles achieve formation with collision avoidance.

6 Experiments
We verify the efficacy of the proposed control laws
in experiments forVS consensusproblem andVS
Flocking problem. The experiments were carried out
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Figure 6: Trajectory of the five vehicles (VS Flocking)
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on 2 vehicles as shown in Fig.9. We use the dSPACE as
real-time calculating machine and 0.2 [s] sampling rate
is obtained because of the delay in wireless network.

6.1 VS Consensus Problem

The proposed Control law 3 (18) forVS consensusis
verified first. The parameter for VS and control law
are selected asxd1 = xd2 = 0.5, yd1 = yd2 =
0, rr1 = [0 0.15]T , rr2 = [0 − 0.15]T , kvr =
0.02, k = 1. The initial conditions areR1(0) =
[0.27 0.18 0]T , R2(0) = [0.27 − 0.18 0]T . The
reference velocities arevd = [0.07 0]T . Fig.10 shows
the trajectory of the positions of the 2 vehicles in the
field. The VVs achieve consensus.

6.2 VS Flocking Problem

We verify proposed Control law 5 (31) forVS Flocking
problems. However weuca

i = 0 because of initial
velocities is0, The parameter for VS and control law
are selected asxd1 = xd2 = 0.1, yd1 = yd2 =
0, rr1 = [0 0.15]T , rr2 = [0 − 0.15]T , kvr =
0.5, ki = 0.05, kv = 0.1. The initial conditions are
R1(0) = [0.3 0.2 0]T , R2(0) = [0.3 − 0.2 0]T . The
reference velocities arevd = [0.07 0]T . Fig.11 shows
the trajectory of the positions of the vehicles in the field
and this shows the VVs achieve flocking.
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Figure 9: Experimental setup
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Figure 10: Trajectory of two vehicles (VS consensus)
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Figure 11: Trajectory of two vehicles (VS Flocking)

7 Conclusions
In this paper, we proposed the formation control
methods for networked multi-vehicle systems using
virtual structure. Our proposed control laws can
achieve desired formations for nonholonomic systems.
We proved asymptotic stability for these control
strategies. Experimental and simulation results
demonstrated the effectiveness of our approaches.
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