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Abstract— This paper deals with an H∞ control attenuat-
ing initial-state uncertainties of controllers. An H∞ control
problem, which treats a mixed attenuation of disturbance
and initial-state uncertainty of controllers for linear time-
invariant systems in the infinite-horizon case, is examined.
The mixed attenuation supplies H∞ controls with good
transients and assures H∞ controls of robustness against
initial-state uncertainty of controllers. We derive a necessary
and sufficient condition of the mixed attenuation problem.
Furthermore we apply this proposed method to a magnetic
suspension system, and evaluate attenuation property of the
proposed an H∞ control approach.

Keywords—H∞ Control, Robust Control, Initial-State Un-
certainties of Controllers, DIA

I. INTRODUCTION

H∞ control is one of the prevailing control system
design methods which have been applied to various in-
dustries including automobile, space development and so
on. It was established as a powerful robust control system
design tool. A general H∞ control for linear time-invariant
systems attenuates the effect of disturbances on controlled
outputs and is originally defined under the assumption
that the initial states of the system are zero. In actual
plants, the initial states are often uncertain and might be
zero or non-zero. If the initial states are non-zero, the
system adopting an H∞ control will present some tran-
sients as the effect of the non-zero initial states, to which
the H∞ control is not intrinsically responsible. Recently,
gain-scheduling controls and switching controls have been
researched strenuously[1][2][3] for high functional control
such as global stabilization and fault tolerant properties.
It is well known that bumpy responses are caused after
controller switching and it is a serious issue. Part of the
reason for this problem are states of systems just behind
switching act the uncertain initial states for the switched
controller. These motivates us in this paper to be concerned
with H∞ controls which accomplish a mixed attenuation
of disturbance and initial-state uncertainty of the controller.

It is expected that the mixed attenuation of disturbance
and initial-state uncertainty in controlled outputs supplies
H∞ controls with some good transients and assures H∞
controls of robustness against initial-state uncertainty. In
the finite-horizon case, a generalized type of H∞ con-
trol problem was formulated and solved[4][5], and was
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extended to the infinite-horizon case[5][6]. The problem
discussed in [6] was limited to time-invariant systems
satisfying the orthogonality assumptions[7][8][9]. In [10],
an infinite-horizon disturbance and initial state uncertainty
attenuation control problem without the orthogonality as-
sumptions had formulated and a necessary and sufficient
condition for a solution, together with an explicit formula
of the solution, is derived. Moreover this approach was
applied to a magnetic suspension system, and evaluated
the effectiveness[10].

The previous mixed attenuation problem is formulated
only for the initial-states of the plants. However, Initial-
states uncertainties of controllers also might cause bumpy
responses by the controller switching. In this paper, we
have formulated an infinite-horizon disturbance and ini-
tial state uncertainties of both of plants and controllers
attenuation control problem. A necessary and sufficient
condition for a solution to exist is derived. Finally we
apply this approach to a magnetic suspension system, and
evaluate the effectivity against robustness for initial-state
uncertainties by control simulation.

II. PRELIMINARIES

Consider the linear time-invariant system which is de-
fined on the time interval [0,∞) and described by⎧⎨

⎩
ẋ = Ax + B1w + B2u, x(0) = x0

z = C1x + D12u
y = C2x + D21w

(1)

where x ∈ Rn is the state and x(0) = x0 is the initial
state; u ∈ Rr is the control input; y ∈ Rm is the observed
output; z ∈ Rq is the controlled output; w(t) ∈ Rp is the
disturbance and is a square integrable function define on
[0,∞).

A,B1, B2, C1, C2,D12 and D21 are constant matrices
of appropriate dimensions and satisfy that

• (A,B1): Stabilizable, (C1, A): Detectable
• (A,B2): Controllable, (C2, A): Observable
• DT

12D12 = I, D21D
T
21 = I

• DT
12C1 = 0, B1D

T
21 = 0

For system (1), every admissible control u(t) is given
by a linear time-invariant system of the form{

u = Jx + Ky
ẋ = Gx + Hy, x(0) = x0

(2)

which makes the closed-loop system given by (1) and (2)
internally stable, where x is the state of the controller of
a finite dimensions; J,K,G and H are constant matrices
of appropriate dimensions.
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III. AN H∞ CONTROL CONSIDERING INITIAL-STATE

UNCERTAINTIES OF PLANTS

In this section, previous results; an H∞ control consid-
ering initial-state uncertainties of Plants[10] is shown. Let
(1), (2) be Plant and controller, where there initial-states
are x(0) = x0, x(0) = 0 respectively. Note that there is a
no consideration about initial-states of controllers.

For the system and the class of admissible controls
described above, consider a mixed-attenuation problem.

Problem 1. H∞DIA Control Problem
Find an admissible control attenuating disturbances and

initial state uncertainties in the way that, for given N1 > 0,

‖z‖2
2 < ‖w‖2

2 + xT
0 N−1

1 x0 (3)

for all w ∈ L2[0,∞) and all x0 ∈ Rn, s.t., (w, x0) �=
0. We call such an admissible control the Disturbance
and Initial state uncertainty Attenuation (DIA) control.
The weighting matrix N1 on x0 is a measure of relative
importance of the initial-state uncertainty attenuation to the
disturbance attenuation. This problem is a kind of mixed
attenuation problems[11], [12].

Let us assume the so-called Riccati-based conditions as
below in order to solve the DIA control problem.

(A1) There exists a solution M > 0 to the Riccati
equation

MA+AT M−M(B2B
T
2 −B1B

T
1 )M+CT

1 C1 = 0
(4)

such that

A − B2B
T
2 M + B1B

T
1 M (5)

is stable.
(A2) There exists a solution P > 0 to the Riccati

equation

AP +PAT −P (CT
2 C2 −CT

1 C1)P +B1B
T
1 = 0

(6)
such that

A − PCT
2 C2 + PCT

1 C1 (7)

is stable.
(A3) S := M(I − PM)−1 > 0

Remark 1. (A3) is equal to ρ(PM) < 1. Where
ρ(X) denotes the spectral radius of matrix X , and
ρ(X) = max |λi(X)|.

Theorem 1.[6], [10] Suppose that the conditions (A1),(A2)
and (A3) are satisfied. The H∞ central controller satisfied
the condition (3) if and only if the condition (A4) is
satisfied. Where the H∞ central controller is as below.{

u = −BT
2 Sx

ẋ = Ax + B2u + PCT
2 (y − C2x) + PCT

1 C1x
(8)

(A4) Q + N−1
1 − P−1 > 0

where Q is the maximal solution of the Riccati equation

Q(A + B1B
T
1 P−1) + (A + B1B

T
1 P−1)T Q

−Q(BT
1 − DT

21C2PL)T (BT
1 − DT

21C2PL)Q = 0
(9)

with L := (I − PM)−1.

IV. AN H∞ CONTROL CONSIDERING INITIAL-STATE

UNCERTAINTIES OF CONTROLLERS

An H∞ control considering initial-state uncertainties
of Controller; main result of this paper is shown in this
section. Suppose initial states of Plants and Controllers are
respectively x(0) = 0, x(0) = x0.

Here consider a mixed attenuation problem as below.

Problem 2. H∞ control problem considering initial-
state uncertainties of Controllers

Find an admissible control attenuating disturbances and
initial state uncertainties in the way that, for given N2 > 0,

‖z‖2
2 < ‖w‖2

2 + xT
0 N−1

2 x0 (10)

for all w ∈ L2[0,∞) and all x0 ∈ Rn, s.t., (w, x0) �= 0.
The weighting matrix N2 on x0 is a measure of relative

importance of the initial-state uncertainty attenuation to the
disturbance attenuation. A larger choice of N2 in the sense
of matrix inequality order means finding an admissible
control which attenuates the initial-state uncertainty more.

For this problem under the Riccati-based three
conditions (A1),(A2) and (A3), we can obtain the
following result.

Lemma 1. Suppose that the condition (A1),(A2) and (A3)
are satisfied, then the H∞ central controller (8) satisfies
the following inequality

‖z‖2
2 < ‖w‖2

2 + xT
0 (S + P−1)x0 (11)

for all w ∈ L2[0,∞) and all x0 ∈ Rn.

Proof.
Consider the functional V1(t),

V1(t) := xT Sx + (x − x)T P−1(x − x) (12)

then, differentiating (12) both sides with respect to t, and
inserting conditions (A1)-(A3) into the right hand side, we
have

V̇1(t) = −‖z‖2 + ‖w‖2 + ‖u + BT
2 Sx‖2

− ‖w − w0‖2 (13)

where w0 := DT
21C2PSx + (BT

1 −DT
21C2P )P−1(x− x).

Integrating both sides with respect to t over the interval
[0,∞), we obtain the left hand side as∫ ∞

0

V̇1(t)dt = −xT
0 (S + P−1)x0 (14)
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implying the control input u(t) as (8), and

−xT
0 (S + P−1)x0 = −‖z‖2

2 + ‖w‖2
2 − ‖w − w0‖2

2 (15)

from ‖w − w0‖2
2 > 0, we finally obtain as

‖z‖2
2 < ‖w‖2

2 + xT
0 (S + P−1)x0

�
This Lemma is concerned with the condition for P and

S, not N2. Next, the following condition is assumed.
(A5) S + P−1 < N−1

2

If the condition (A5) holds, the inequality (10) follows
from the inequality (11).

‖z‖2
2 < ‖w‖2

2 + xT
0 (S + P−1)x0

< ‖w‖2
2 + xT

0 N−1
2 x0 (16)

In view of the inequality above, the condition (A5)
seems necessary for the H∞ central controller satisfied
(10).

Next we will show a necessary and sufficient condition
which the main result on this paper. In order to state the
result, let us introduce the following condition:
(A6) LT QL + N−1

2 − P−1 − S > 0
where Q is the maximal solution of Riccati equation (9).

Theorem 2. Suppose that the conditions (A1),(A2) and
(A3) are satisfied. The H∞ central controller satisfied the
condition (10) if and only if the condition (A6) is satisfied.

Proof. We prove Lemma2 and Lemma3. Then Theorem2
follows. Lemma2 and Lemma3 require the following con-
dition:
(A7) For all w ∈ L2[0,∞) and all x0 ∈ R s.t., (w, x0 �=
0), the inequality

‖w − w0‖2
2 + xT

0 (N−1
2 − P−1 − S)x0 > 0 (17)

holds.
Lemma 2. Suppose that the conditions (A1),(A2) and (A3)
are satisfied. The H∞ central controller (8) satisfied the
condition (10) if and only if the condition (A7) is satisfied.

Proof. Consider the functional V1 = xT Sx + (x −
x)T P−1(x − x) , then, differentiating both sides with
respect to t, and inserting (A1)-(A3) into the right hand
side, and integrating both sides with respect to t over the
interval [0,∞), we obtain

‖w − w0‖2
2 = ‖w‖2

2 − ‖z‖2
2 + xT

0 (S + P−1)x0 (18)

Insert (18) into (A7), then we have

‖z‖2
2 < ‖w‖2

2 + xT
0 N−1

2 x0 (19)

Converse, insert (18) into (10), then we have

‖w − w0‖2
2 + xT

0 (N−1
2 − P−1 − S)x0 > 0 (20)

�
Lemma 3. Suppose that the conditions (A1),(A2) and
(A3) are satisfied. The condition (A7) is equivalent to the

condition (A6).

Proof. Consider the functional V2(t) := fT Qf , where
f := x(t)−Lx(t). Differentiating both sides with respect
to t and completing the square argument as

V̇2(t) = ‖(w−w0)+(BT
1 −DT

21C2PLT )Qf‖2−‖w−w0‖2

(21)
then, integrating both sides with respect to t over the
interval [0,∞), we have left hand side as∫ ∞

0

V̇2(t)dt = −xT
0 LT QLx0 (22)

implying the control input u(t) as (8), and

−xT
0 LT QLx0 = ‖w − w0 + (BT

1 − DT
21C2PLT )Qf‖2

2

− ‖w − w0‖2
2 (23)

Insert (23) into (A7), then we have

‖w − w0 + (BT
1 − DT

21C2PLT )Qf‖2
2

+xT
0 (LT QL + N−1

2 − P−1 − S)x0 > 0 (24)

The 1st term in the left hand side are positive, hence we
have

LT QL + N−1
2 − P−1 − S > 0 (25)

Converse, insert (23) into (A6), then we have

‖w − w0‖2
2 + xT

0 (N−1
2 − P−1 − S)x0 > 0 (26)

�

V. AN H∞ CONTROL CONSIDERING INITIAL-STATE

UNCERTAINTIES OF PLANTS AND CONTROLLERS

In this section, we formulated an H∞ control problem
considering initial states of both plants and controllers, and
a necessary and sufficient condition for a solution to exist
is showed. Suppose initial states of Plants and Controllers
are x(0) = x0, x(0) = x0 respectively . In order to handle
initial states synthetically, we introduce the state of closed-
system x̂(t) :=

[
x(t)T x(t)T

]T
; (initial state of closed-

system x̂(0) := x̂0 =
[
xT

0 xT
0

]T
).

Here consider a mixed attenuation problem sated as
below.

Problem 3. H∞ control problem considering initial-
state uncertainties of Plants and Controllers

Find an admissible control attenuating disturbances and
initial state uncertainties in the way that, for given N3 > 0,

‖z‖2
2 < ‖w‖2

2 + x̂T
0 N−1

3 x̂0 (27)

for all w ∈ L2[0,∞) and all x̂0 ∈ R2n, s.t., (w, x̂0) �= 0.
The weighting matrix N3 on x̂0 is a measure of relative

importance of the initial-state uncertainty of closed-loop
system attenuation to the disturbance attenuation. A larger
choice of N3 means finding an admissible control which
attenuates the initial-state uncertainty of closed-loop sys-
tem more.
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For this problem, we can obtain the following result.

Lemma 4. Suppose that the condition (A1),(A2) and (A3)
are satisfied, then the H∞ central controller (8) satisfies
the following inequality

‖z‖2
2 < ‖w‖2

2 + x̂T
0 MPS x̂0 (28)

for all w ∈ L2[0,∞) and all x̂0 ∈ R2n.

where, MPS :=
[

P−1 −P−1

−P−1 S + P−1

]
∈ R2n×2n.

Proof. Consider the functional V1(t) = xT Sx + (x −
x)T P−1(x−x) again. Then, differentiating both sides with
respect to t, and inserting conditions (A1)-(A3) into the
right hand side in the same way of previous section, then
we have

V̇1(t) = −‖z‖2 + ‖w‖2 + ‖u + BT
2 Sx‖2 − ‖w − w0‖2

Integrating both sides with respect to t over the interval
[0,∞) , we have left hand side as
∫ ∞

0

V̇1(t)dt = −[xT
0 xT

0 ]T
[

P−1 −P−1

−P−1 S + P−1

] [
x0

x0

]

= −x̂T
0 MPS x̂0 (29)

implying the control input u(t) as (8),

−x̂T
0 MPS x̂0 = −‖z‖2

2 + ‖w‖2
2 − ‖w − w0‖2

2 (30)

here from ‖w − w0‖2
2 > 0, we obtain as

‖z‖2
2 < ‖w‖2

2 + x̂T
0 MPS x̂0

�
Lemma 4 is concerned with the condition for matrix

MPS , not for N3. Next the following condition is assumed.
(A8) MPS < N−1

3

If the condition (A8) holds, the inequality (27) follows
from the inequality (28).

‖z‖2
2 < ‖w‖2

2 + x̂T
0 MPS x̂0 < ‖w‖2

2 + x̂T
0 N−1

3 x̂0 (31)

In view of the inequality above, the condition (A8) is
necessary for the an H∞ central controller satisfied the
condition (27). Next we will show a necessary and suffi-
cient condition. In order to state the result, let us introduce
the following condition:
(A9) MQL + N−1

3 − MPS > 0

where MQL :=
[

Q −QL
−LT Q LT QL

]
∈ R2n×2n.

Theorem 3. Suppose that the conditions (A1),(A2) and
(A3) are satisfied. The H∞ central controller satisfied the
condition (27) if and only if the condition (A9) is satisfied.

Proof. Theorem 3 can be proven in same way of Theorem
4 in the section 4. First, we prove Lemma4 and Lemma5.
Then Theorem3 follows. Lemma4 and Lemma5 require the
following condition:

(A10) For all w ∈ L2[0,∞) and all x̂0 ∈ R s.t., (w, x̂0 �=
0), the inequality below holds.

‖w − w0‖2
2 + x̂T

0 (N−1
3 − M−1

PS)x̂0 > 0 (32)

Lemma 5. Suppose that the conditions (A1),(A2) and
(A3) are satisfied. The an H∞ central controller (8)
satisfied the condition (27) if and only if the condition
(A10) is satisfied.

Proof. Consider the functional V1 = xT Sx + (x −
x)T P−1(x − x) , then, differentiating both sides with
respect to t, and inserting (A1)-(A3) into the right hand
side, and integrating both sides with respect to t over the
interval [0,∞), we obtain

‖w − w0‖2
2 = ‖w‖2

2 − ‖z‖2
2 + x̂T

0 MPS x̂0 (33)

Insert (30) into (A10), we have

‖z‖2
2 < ‖w‖2

2 + x̂T
0 N−1

3 x̂0

Converse, insert (27) into (30), we have

‖w − w0‖2
2 + x̂T

0 (N−1
3 − MPS)x̂0 > 0

�
Lemma 6. Suppose that the conditions (A1),(A2) and
(A3) are satisfied. The H∞ central controller (8) satisfied
the condition (27) if and only if the condition (A10) is
satisfied.

Proof. Consider the functional V2(t) = fT Qf again. Then,
differentiating both sides with respect to t, and inserting
(A1)-(A3) into the right hand side, we obtain

V̇2(t) = ‖(w−w0)+(BT
1 −DT

21C2PLT )Qf‖2−‖w−w0‖2

(34)
Integrating both sides with respect to t over the interval
[0,∞), we have left hand side as∫ ∞

0

V̇2(t)dt = V2(∞) − V2(0)

= − [
xT

0 xT
0

] [
Q −QL

−LT Q LT QL

] [
x0

x0

]

= −x̂T
0 MQLx̂0 (35)

Join (34) and (35),we have

−x̂T
0 LT QLx̂0 = ‖w − w0 + (BT

1 − DT
21C2PLT )Qf‖2

2

− ‖w − w0‖2
2 (36)

Insert (36) to (A10), we have

‖w − w0 + (BT
1 − DT

21C2PLT )Qf‖2
2

+x̂T
0 (MQL + N−1

3 − MPS)x̂0 > 0 (37)

where 1st term of (37) are positive, hence we have

MQL + N−1
3 − MPS > 0

Converse, insert (36) in (A9), we have

‖w − w0‖2
2 + x̂T

0 (N−1
3 − MPS)x̂0 > 0

�
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VI. SUMMARY AND DISCUSSION OF THE RESULTS

The obtained three problems and their conditions are
summarized in Table I.

The condition (A9) includes the conditions (A4) and
(A6) in itself and this result looks reasonable. The inter-
connection of the plant and the controller is considered in
the condition (A9) and it is a harder condition to achieve
than (A4) and (A6).

TABLE I

SUMMARY OF CONDITIONS

Initial value Control Problem &
Condition

x0 ‖z‖2
2 < ‖w‖2

2 + xT
0 N−1

1 x0

(A4) Q + N−1
1 − P−1 > 0

x0 ‖z‖2
2 < ‖w‖2

2 + xT
0 N−1

2 x0

(A6) LT QL + N−1
2 − P−1 − S > 0

x̂0 =

»
x0

x0

–
‖z‖2

2 < ‖w‖2
2 + x̂T

0 N−1
3 x̂0

(A9) MQL + N−1
3 − MPS > 0

VII. EXAMPLES

A. Control System Design

The proposed method is applied to Magnetic Suspension
Systems (MSS) and verified their effectivity by simulation.
A mathematical model of MSS is described as below [10]

ẋg = Agxg + Bgug + Dgv0

yg = Cgxg + w0 (38)

where xg(t) := [x(t) ẋ(t) i(t)]T , ug(t) := e(t), v0(t) :=
[vm(t) vL(t)]T , x(t) is displacement of ball, i(t) is current,
ug(t) = e(t) is control input as voltage, vm(t), vL(t) is
disturbance and noises, w0(t) is sensor noises or influences
of uncertainties. (Ag, Bg) and (Ag,Dg) is controllable and
observable respectively.

Let us consider the disturbances v0 and w0. Since v0

mainly acts on the plant in a low frequency, and w0

shows an uncertainty caused via unmodeled dynamics. We
introduced weighting functions Wv(s) and Ww. Wv(s)
is a weighting function for v0 with 1st order system or
Wv(s) = gain×ωn

s+ωn
, Ww is a weighting scalar for w0.

We selected x(t) and ẋ(t) as a part of controlled output
z1, and selected ug(t) as an another part z2. Then we
introduced weighting matrix Θ = diag [θ1 θ2] on the
regulated variables z1, and weighting scalar ρ on the
regulation of the control input u(:= ug).

Finally, let x :=
[
xT

g xT
w

]T
, where xw denotes the state

of Wv(s), and z :=
[
zT
1 zT

2

]T
, then we can construct the

generalized plant as

ẋ = Ax + B1w + B2u

z = C1x + D12u

y = C2x + D21w (39)

A =
[

Ag DgCw

0 Aw

]
, B1 =

[
0 DgDw

0 Bw

]
,

B2 =
[

Bg

0

]
, C1 =

[
ΘFg 0

0 0

]
, D12 =

[
0
ρ

]
,

C2 = [Cg 0] , D21 = [Ww 0]

Now our control problem setup is finding an admissible
controller K(s) that attenuates disturbances and initial
state uncertainties to achieve DIA condition in (27). After
some control design iterations, the design parameters;
Wv(s), Ww, Θ, and ρ are chosen appropriately, and a direct
calculations yield the H∞DIA controller K(s).

In order to simplify numerical evaluations, a construc-
tion of the maximum value of the weighting matrix N3 is
limited and locked as below

N3 = n3I (40)

where n3 is positive scalar and I is 8th order unit matrix.
The inequality ‖z‖2

2 < ‖w‖2
2 + x̂T

0 N−1
3 x̂0 in (27) suggests

that there exists a trade-off between disturbance attenuation
and initial state uncertainty attenuation, and weighting ma-
trix N3 is an index for a relative significance of initial state
uncertainty attenuation against disturbance attenuation.

To verify effectiveness of N3, we compare a controller
designed based on N3 (proposed method) to a controller
designed based on N1(previous method). Table II shows
values of n1, n3 with changing of a design parameter ωn

in Wv(s).
From Table II, let define Kn1 as a controller with n1 =

2.60 × 10−3(ωn = 2.65 × 10−1), and Kn3 as a controller
with n3 = 2.60 × 10−3(ωn = 1.0 × 10−2). The frequency
response of the controller Kn3 and Kn1 are shown in Fig.1
by a solid line and a dotted line respectively. Comparing
these controllers, we can see that Kn3(s) has a low gain
at wide frequency range and high robustness.

TABLE II

n1 and n3 WITH CHANGING ωn

ωn n1 n3

1.0 × 10−3 4.70 × 10−3 2.35 × 10−3

1.0 × 10−2 5.20 × 10−3 2.60 × 10−3

1.0 × 10−1 3.35 × 10−3 1.68 × 10−3

2.65 × 10−1 2.60 × 10−3 1.30 × 10−3

1.0 × 100 1.77 × 10−3 0.88 × 10−3

B. Simulation and Evaluation I: N1 and N3

We have conducted 4 simulations (Disturbance re-
sponses and Initial responses with initial states of plant,
controller and plant+controller) to evaluate properties of
Kn3(s).

An initial response for xg(0) := xg0 = [1.0×10−3 0 0]T

is shown in Fig.2. Responses of Kn1 have short settling
time, but have large overshoots and vibratory responses.
In contrast, responses of Kn3 have a small overshoot and
converge smoothly. Initial responses for x0 = [0 0 0 5.0×
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Fig. 1. Frequency Responses of H∞DIA Controller

10−5]T and both xg0 and x0 are shown in Figs.3 and 4
respectively. These responses show similar characteristic
to Fig.2. These results suggest Kn3 has a good attenuation
ability for initial state uncertainties than Kn1.

A disturbance response is shown in Fig.5, where input
disturbance is a step-type force disturbance that has mag-
nitude of about 25% steady-state attractive force(0.7[N])
directed downward. In this case, Kn1 has a better transient
performance than Kn3. The reason this result is that Kn3

was selected to have a stronger attenuation performance
for initial-state uncertainties giving up a performance of
attenuation for disturbance.

C. Simulation and Evaluation II: Characteristic of N3

Next we verify controller characteristic for a change
of n3. From Table II, Kn3a, Kn3b and Kn3c that has
respectively n3 = 2.60×10−3, 1.68×10−3 and 0.88×10−3

are defined. Frequency responses of each controller are
shown in Fig.6. Characteristics of controller tend to have
lower gain when controllers have higher n3, especially
frequency range is in 10−3 ∼ 101[Hz].

Initial responses and disturbance responses of Kn3a,
Kn3b and Kn3c are shown in Figs.7 and 8. Where an initial
value; xg0 = [1.0×10−3 0 0]T , x0 = [0 0 0 5.0×10−3] are
given to systems. An initial responses in Fig.7, influences
of initial state uncertainties are attenuated by Kn3a, Kn3b

and Kn3c in that order, and that means a controller that
has larger n3 has a higher robustness for initial state
uncertainties. On the other hand, disturbance responses
in Fig.8, a response of Kn3a has the largest overshoot
in these three examples. It can be seen that this result
is appropriate at the view point of a condition inequality
(27), because there exist a trade-off between initial state
uncertainty attenuation and disturbance attenuation.

All these results considered, we reached the conclusion
that the weighting matrix N3 is an effective index for a rel-
ative significance of an initial state uncertainty attenuation
against a disturbance attenuation.
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Fig. 5. Disturbance Responses

VIII. CONCLUSIONS

In this paper, we considered H∞ control problems with
attenuating initial state uncertainties of controllers.

First, we formulated an H∞ control problem which
considers a mixed attenuation of disturbance and initial-
state uncertainties of controllers and derive a necessary
and sufficient condition for the solution.

Then, an H∞ control problem which considers a initial
state uncertainties of both of the plant and the controller
was formulated and solved. The obtained three problems
and their conditions are summarized in Table I. The
obtained result is a natural extension of the previous result
and it looks reasonable.

Furthermore, we applied a disturbance and initial state
uncertainties attenuation control problem to the magnetic
suspension system, and showed the property and effective-
ness of the proposed mixed attenuation controller by some
control simulation results.
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