H∞ CONTROL ATTENUATING INITIAL STATE
UNCERTAINTIES AND ITS APPLICATION TO
THE MAGNETIC SUSPENSION SYSTEM

Toru Namerikawa
Dept. of Mechanical Eng., Nagaoka University of Technology, Nagaoka, Niigata-Pref., 940-2188 Japan
toru@mech.nagaokaut.ac.jp

Masayuki Fujita
Dept. of Electrical and Electronic Eng., Kanazawa University, Kanazawa, Ishikawa-Pref., 920-8667 Japan
fujita@t.kanazawa-u.ac.jp

Roy S. Smith†
Dept. of Electrical and Computer Eng., Univ. of California Santa Barbara, Santa Barbara, CA, 93106 USA
roy@ece.ucsb.edu

ABSTRACT
This paper deals with a generalized H∞ control attenuating initial-state uncertainties. An H∞ control
problem, which treats a mixed attenuation of disturbance and initial-state uncertainty for linear time-
invariant systems in the infinite-horizon case, is examined. We derived a necessary and sufficient condition
of the generalized mixed attenuation problem[7]. In this paper, we apply this proposed approach to a
magnetic suspension system, and evaluate the effectiveness of the proposed approach by using a mag-
netic suspension system. Comparing the proposed controller with previous results[6], we show the prop-
erty and effectiveness of the proposed generalized H∞ control attenuating initial state uncertainties.

keywords: H∞ Control, DIA Control, Initial-State Uncertainties, Magnetic Suspension Systems

INTRODUCTION
Usual notation of the H∞ control is a time-invariant control which attenuates the effect of disturbances
on controlled outputs and is originally defined under the assumption that the initial states of the system
are zero. Initial states are often uncertain and might be zero or non-zero. If the initial states are non-
zero, the system adopting an H∞ control will present some transients as the effect of the non-zero initial
states, to which the H∞ control is not responsible. On the other hand, it is expected that the mixed atten-
uation supplies H∞ controls with some good transients and assures H∞ controls of robustness against

†R. Smith was supported by NSF under grant ECS-9978562
MIXED ATTENUATION OF DISTURBANCE AND INITIAL-STATE UNCERTAINTY

Consider the linear time-invariant system which is defined on the time interval $[0, \infty)$ and described by

\begin{align}
\dot{x} &= Ax + B_1w + B_2u, \quad x(0) = x_0 \\
z &= C_1x + D_{12}u \\
y &= C_2x + D_{21}w
\end{align}

(1)

where $x \in \mathbb{R}^n$ is the state and x_0 is the initial state; $u \in \mathbb{R}^r$ is the control input; $y \in \mathbb{R}^m$ is the observed output; $z \in \mathbb{R}^d$ is the controlled output; $w \in \mathbb{R}^p$ is the disturbance. Without loss of generality, we regard x_0 as the initial-state uncertainty, and $x_0 = 0$ as known initial-state case. The disturbance $w(t)$ is a square integrable function defined on $[0, \infty)$. Note that this system does not have the orthogonality assumptions\[5\], and one of the linear time-invariant systems with the orthogonality assumptions in this framework is written in \[4\].

$A, \ B_1, \ B_2, \ C_1, \ C_2, \ D_{12}$ and D_{21} are constant matrices of appropriate dimensions and satisfies that

- (A, B_1) is controllable and (A, C_1) is observable

- (A, B_2) is controllable and (A, C_2) is observable

- $D_{12}^T D_{12} \in \mathbb{R}^{r \times r}$ is nonsingular

- $D_{21}^T D_{21} \in \mathbb{R}^{m \times m}$ is nonsingular

For system (1), every admissible control $u(t)$ is given by a linear time-invariant system of the form

\begin{align}
\dot{\zeta} &= J\zeta + Ky \\
\zeta &= G\zeta + Hy, \quad \zeta(0) = 0
\end{align}

(2)

which makes the closed-loop system given by (1) and (2) internally stable, where $\zeta(t)$ is the state of the controller of a finite dimension; J, K, G and H are constant matrices of appropriate dimensions.

For the system and the class of admissible controls described above, consider a mixed-attenuation problem stated as below.

Problem 1 DIA Control Problem

Find an admissible control attenuating disturbances and initial state uncertainties in the way that, for given $N > 0$, z satisfies

$$
\|z\|^2 < \|w\|^2 + x_0^T N^{-1} x_0
$$

(3)

for all $w \in L^2[0, \infty)$ and all $x_0 \in \mathbb{R}^n$, s.t., $(w, x_0) \neq 0$.

We call such an admissible control the Disturbance and Initial state uncertainty Attenuation (DIA) control. The weighting matrix N on x_0 is a measure of relative importance of the initial-state uncertainty attenuation to the disturbance attenuation. A larger choice of N in the sense of matrix inequality order means finding an admissible control which attenuates the initial-state uncertainty more.

From the definition, a DIA control should be an H_∞ control when the initial state is known($x_0 = 0$). This implies that, in order to solve the DIA control problem, we require the so-called Riccati equation conditions:

A1 There exists a solution $M > 0$ to the Riccati equation

$$
M(A - B_2(D_{12}^T D_{12})^{-1} D_{12}^T C_1) + (A - B_2(D_{12}^T D_{12})^{-1} D_{12}^T C_1)^T M
- M(B_2(D_{12}^T D_{12})^{-1} B_2^T - B_2 B_2^T) M
+ C_1^T C_1 - C_1^T D_{12}^T D_{12} C_1 = 0
$$

(4)

such that $A - B_2(D_{12}^T D_{12})^{-1} D_{12}^T C_1 - B_2(D_{12}^T D_{12})^{-1} B_2^T M + B_2 B_2^T M$ is stable.

A2 There exists a solution $P > 0$ to the Riccati equation

$$
(A - B_1 D_{21}^T (D_{21} D_{21}^T)^{-1} C_2) P + P(A - B_1 D_{21}^T (D_{21} D_{21}^T)^{-1} C_2)^T
- P(C_2^T (D_{21} D_{21}^T)^{-1} C_2 - C_2^T C_2) P
+ B_1 B_1^T - B_1 D_{21}^T (D_{21} D_{21}^T)^{-1} D_{21} B_1^T = 0
$$

(5)

such that $A - B_1 D_{21}^T (D_{21} D_{21}^T)^{-1} C_2 - B_2 (D_{21} D_{21}^T)^{-1} C_2 + P C_2^T (D_{21} D_{21}^T)^{-1} C_2$ is stable.

A3 $\rho(PM) < 1$, where $\rho(X)$ denotes the spectral radius of matrix X, and $\rho(X) = \max |\lambda_i(X)|$.

Next, the following condition is assumed.

A4 $Q + N^{-1} - P^{-1} > 0$, where Q is the maximal solution of the Riccati equation

$$
Q(A - B_1 D_{21}^T (D_{21} D_{21}^T)^{-1} C_2 + (B_1 B_1^T - B_1 D_{21}^T (D_{21} D_{21}^T)^{-1} D_{21} B_1^T) P^{-1})
+ (A - B_1 D_{21}^T (D_{21} D_{21}^T)^{-1} C_2 + (B_1 B_1^T - B_1 D_{21}^T (D_{21} D_{21}^T)^{-1} D_{21} B_1^T) P^{-1})^T Q
- Q(B_1^T - D_{21}^T (D_{21} D_{21}^T)^{-1} (C_2 P + D_2 B_1^T) L)^T
\times (B_1^T - D_{21}^T (D_{21} D_{21}^T)^{-1} (C_2 P + D_2 B_1^T) L) Q
= 0
$$

(6)

with $L := (I - PM)^{-1}$.

Then, we obtained the following main results\[7\].

Theorem 1 Suppose that the conditions (A1), (A2), and (A3) are satisfied. The central control (7) is a DIA control if and only if the condition (A4) is satisfied, where the central control is given by

$$
\begin{align}
\zeta &= - (D_{12}^T D_{12})^{-1} (B_2^T M + D_{12}^T C_1)(I - PM)^{-1} \zeta \\
\zeta(0) &= 0
\end{align}

(7)

and $S := M(I - PM)^{-1}$.

APPLICATION TO MAGNETIC SUSPENSION SYSTEM

We apply the proposed approach[7] to a magnetic suspension system, and evaluate its effectiveness.

CONSTRUCTION

The experimental setup is shown in Fig.1[8]. An electromagnet is located at the top of the experimental system. The control problem is to levitate the iron ball stably utilizing the electromagnetic force, where a mass \(M \) of the iron ball is 1.75 kg, and steady state gap \(X \) is 5 mm.

![Diagram of Magnetic Suspension System]

FIGURE 1: Magnetic Suspension System

MATHEMATICAL MODEL

In order to derive a model of the system by physical laws, we introduce following assumptions[8].

[a1] Magnetic flux density and magnetic field do not have any hysteresis, and they are not saturated.

[a2] There are no leakage flux in the magnetic circuit.

[a3] Magnetic permeability of the electromagnet is infinity.

[a4] Eddy current in the magnetic pole can be neglected.

[a5] Coil inductance is constant around the operating point, and an electromotive force due to a motion of the iron ball can be neglected.

These assumptions are almost essential to model this system. Under these assumptions, we derived equations of the motion, the electromagnetic force, and the electric circuit as

\[
M \frac{d^2 x(t)}{dt^2} = Mg - f(t) + v_m \tag{8}
\]

\[
f(t) = k \left(\frac{I + i(t)}{X + x(t) + x_0} \right)^2 \tag{9}
\]

\[
L \frac{di(t)}{dt} + R(I + i(t)) = E + e(t) + v_L \tag{10}
\]

where \(M \) is a mass of the iron ball, \(X \) is a steady gap between the electromagnet(EM) and the iron ball, \(x(t) \) is a deviation from \(X \), \(I \) is a steady current, \(i(t) \) is a deviation from \(I \), \(E \) is a steady voltage, \(e(t) \) is a deviation from \(E \), \(f(t) \) is EM force, \(k \), \(x_0 \) are coefficients of \(f(t) \), \(L \) is an inductance of EM, and \(R \) is a resistance of EM, \(v_m \) and \(v_L \) are exogenous disturbance inputs.

Next we linearize the electromagnetic force (9) around the operating point by the Taylor series expansion as

\[
f(t) = k \left(\frac{I}{X + x_0} \right)^2 - K_x x(t) + K_i i(t), \tag{11}
\]

where \(K_x = 2kI^2/(X + x_0)^3 \) and \(K_i = 2kI/(X + x_0)^2 \).

The sensor provides the information for the gap \(x(t) \). Hence the measurement equation can be written as

\[
y(t) = x(t) + w_0 \tag{12}
\]

where \(w_0 \) represents the sensor noise as well as the model uncertainties. Thus, summing up the above results, the state equations for the system are

\[
\begin{align*}
\dot{x}_g &= A_g x_g + B_g u_g + D_g v_0 \\
y_g &= C_g x_g + w_0
\end{align*} \tag{13}
\]

where \(x_g := [x \ x' \ i]' \), \(u_g := e \), \(v_0 := [v_m \ v_L]' \),

\[
A_g = \begin{bmatrix}
0 & 1 & 0 \\
481 & 0 & -18.4 \\
0 & 0 & -45.7
\end{bmatrix}, \quad B_g = \begin{bmatrix}
0 & 0 \\
1 & 0 \\
0 & 1.97
\end{bmatrix}^T
\]

\[
C_g = \begin{bmatrix}
1 & 0 & 0
\end{bmatrix}, \quad D_g = \begin{bmatrix}
0.57 & 0 \\
0 & 1.97
\end{bmatrix}
\]

Here \((A_g, B_g)\) and \((A_g, D_g)\) are controllable, and \((A_g, C_g)\) is observable.

PROBLEM SETUP FOR CONTROL SYSTEM DESIGN

For the magnetic suspension system described and modeled in the previous section, our principal control objective is its stabilization. Further, as we have clarified in the modeling of the disturbances, it should be stabilized robustly against \(v_0 \) and \(w_0 \). Moreover the closed-loop system is expected to have a better transient performance. To this end, we will setup the control problem within the framework of the \(H_\infty \) DIA control.

First let us consider the system disturbance \(v_0 \). Since \(v_0 \) mainly acts on the plant in a low frequency range in practice, it is helpful to introduce a frequency weighting factor. Hence let \(v_0 \) be of the form

\[
v_0 = W_v(s)w_2 \tag{14}
\]

\[
W_v(s) = \Phi W(s) = \Phi C_w(sI - A_w)^{-1} B_w \tag{15}
\]

\[
\Phi = \begin{bmatrix}
1 & 1
\end{bmatrix}^T \tag{16}
\]
where $W_w(s)$ is a frequency weighting whose gain is relatively large in a low frequency range, and w_2 is a (1, 2) element of w. These values, as yet unspecified, can be regarded as free design parameters. It is noted that, in (14), we have not made explicit distinction in the notation between a time domain function and its Laplace transform. And let us consider the system disturbance w_0 for the output. The disturbance w_0 shows an uncertain influence caused via unmodeled dynamics, and define

$$w_0 = W_w w_1$$ \hspace{1cm} (17)

where W_w is a weighting scalar, and w_1 is a (1, 1) element of w. Note that W_w is sometimes frequency dependent, but it is selected as a scalar for the sake of simplicity. Next we consider the variables which we want to regulate. In this study, since our main concern is in the stabilization of the iron ball, the gap and the corresponding velocity are chosen; i.e.,

$$z_g = F_g x_g, \quad F_g = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$ \hspace{1cm} (18)

Then, as the error vector, let us define as follows

$$z_1 = \Theta z_g, \quad \Theta = \text{diag} \left[\theta_1, \theta_2 \right]$$ \hspace{1cm} (19)

where Θ is a weighting matrix on the regulated variables z_g, and z_1 is a (1, 1) element of z. This value Θ, as yet unspecified, are also free design parameters. Furthermore the control input u should be also regulated, and we define

$$z_2 = \rho u$$ \hspace{1cm} (20)

where ρ is a weighting scalar, and z_2 is a (1, 2) element of z. Finally, let $x := [x_g \ x_w]^T$, where x_w denotes the state of the frequency weighting $W_w(s)$, and $w := [w_g^T \ w_w^T]^T, z := [z_g^T \ z_w^T]^T$, then we can construct the generalized plant as the following:

$$\dot{x} = Ax + B_1 w + B_2 u$$ \hspace{1cm} (21)

where

$$A = \begin{bmatrix} A_g & D_g C_w \\ 0 & A_w \end{bmatrix}, B_1 = \begin{bmatrix} 0 & 0 \\ D_g & B_w \end{bmatrix},$$

$$B_2 = \begin{bmatrix} B_g \\ 0 \end{bmatrix}, C_1 = \begin{bmatrix} \Theta F_g & 0 \\ 0 & 0 \end{bmatrix}, D_{12} = \begin{bmatrix} \rho \end{bmatrix},$$

$$C_2 = \begin{bmatrix} C_g & 0 \\ 0 & D_2 \end{bmatrix}, D_{21} = [W_w \ 0]$$

The block diagram of the generalized plant with an unspecified controller K is shown in Fig. 2. Since the disturbances w represent the various model uncertainties, the effects of these disturbances on the error vector z should be reduced. Note that this generalized plant does not have the orthogonality assumptions[5], and one of the generalized plants with the orthogonality assumptions in this framework is written in [4, 6]. Now our control design problem setup is: Find an admissible controller $K(s)$ that attenuates disturbances and initial state uncertainties to achieve DIA condition in (3).

DIA CONTROLLER

We design controllers for the generalized plant in the previous subsection based on the following 4-Step procedure.

[Step 1] Selection of the weighting function $W_w(s)$ and W_w:

$W_w(s)$ is a frequency weighting whose gain is relatively large in a low frequency range, and W_w is a weighting scalar.

[Step 2] Selection of the weighting Matrix Θ and ρ:

Θ is a weighting matrix for the regulated variables z_g, and ρ is for the input variable u.

[Step 3] Construction of generalized plant and a DIA controller:

With the specified design parameters in [Step 1] and [Step 2], the generalized plant is constructed. The DIA controller is designed for this plant, and its state-space description is given by easy algebraic calculation from (7).

$$\dot{x}_c = A_c x_c + B_c y, \quad u = C_c x_c$$ \hspace{1cm} (22)

where x_c is the state of the DIA controller and A_c, B_c and C_c are given as

$$A_c = A + P C_c^T C_1 - (P C_c^T + B_c D_2 C_1) (D_2 C_1)^{-1} C_2 - (B_c + P C_c^T D_1) (D_1 D_2)^{-1} (D_1^T M + D_2^T C_1) L,$$

$$B_c = (P C_c^T + B_c D_2) (D_2 D_1)^{-1} L,$$

$$C_c = - (D_1 D_2)^{-1} (B_2^T M + D_2^T C_1) L.$$

[Step 4] Calculation of the max. matrix N:

Calculate the maximum N satisfies the condition (A4). For the sake of simplicity, the structure of the matrix N is limited in $N = n I$, where n is a positive scalar number.
After some iteration in MATLAB environment, these design parameters are chosen by the above 4-step procedure as follows:

\[
W_w(s) = \frac{2.5 \times 10^6}{s + 0.010} \\
W_v = 0.5 \\
\Theta = \text{diag}[1.01, 1.0 \times 10^{-5}] \\
\rho = 1.0 \times 10^{-10}
\]

(23)

Direct calculations yield the central controller;

\[
K(s) := C_K (sI - A_K)^{-1} B_K
\]

(24)

where

\[
A_K = \begin{bmatrix}
-260 & 1.00 & 0 & 0 \\
-31700 & 2.29 \times 10^{-4} & -18.4 & 1.43 \times 10^6 \\
2.65 \times 10^{10} & 5.65 \times 10^6 & -14400 & 1.12 \times 10^6 \\
1.72 & -1.56 \times 10^{-8} & 0 & -0.010
\end{bmatrix}
\]

\[
B_K = \begin{bmatrix}
361 \\
48600 \\
-3.04 \times 10^5 \\
-2.31
\end{bmatrix}^T
\]

\[
C_K = \begin{bmatrix}
1.04 \times 10^{10} \\
2.87 \times 10^6 \\
-7290 \\
5.64 \times 10^8
\end{bmatrix}
\]

The frequency response of the controller \(K(s)\) is shown in Fig. 3 by a solid line. And the maximum value of the weighting matrix \(N\) is given by \(N = 2.7735 \times 10^{-2} \times I\).

We designed the standard \(H_{\infty}\) controller for the comparison, where the \(H_{\infty}\) controller[8] was designed via the MATLAB command \textit{hinf}	exttt{syn}.	exttt{m}. We denote the state-space realization of the obtained \(H_{\infty}\) controller as \(K_{\infty}\). The frequency response of the controller \(K_{\infty}\) is shown in Fig. 3 by a dotted line. Furthermore we also show the previous DIA controllers \(K_{\text{DIA}_1}(s)\) and \(K_{\text{DIA}_2}(s)\) in Fig.3, by a dashed line and a dash-dot line, respectively [6].

Comparing these four controllers, \(K(s)\) has a high gain at the low frequency and a good roll-off property at the high frequency, and the comprehensive frequency response looks like a modified PID controller. In the previous DIA design framework, it was difficult to let controllers get hold an integral property[6].

SIMULATION RESULTS

We have conducted simulations to evaluate properties of the controller \(K\). The iron ball at a standstill has been suspended stably with either the controller \(K, K_{\infty}, K_{\text{DIA}_1}\), and \(K_{\text{DIA}_2}\). To ascertain transient responses, we input a step reference signal to a suspended iron ball with a nonzero initial state \(x_0\). It is expected that \(K\) will show a better initial response and also a better step response for the reference signal.

A step reference signal is added to the system around 1.0[s], where the magnitude of the step signal is 0.1[mm], and the initial state is \(x_0 = [0.0 \ 0.0 \ 0.1]^T\).

Simulation results are shown in Fig. 4. An enlargement of Fig.4 at the initial response is Fig. 5, and an enlargement at the step response is Fig.6, respectively. Note that they are definitely same with Fig 4.

We first evaluate the attenuating property of the initial state uncertainty in Fig.5. From the results, we can see that the \(K_{\text{DIA}_1}\) and \(K_{\text{DIA}_2}\) show relatively better performance than \(K\) for the initial state uncertainty. However \(K\) has a better transient performance than \(K_{\infty}\), which shows \(K\) has a better property than \(K_{\infty}\), but not better than \(K_{\text{DIA}_1}\) and \(K_{\text{DIA}_2}\).

Since our concerns are not only in the attenuation of the initial state uncertainty, but also in the basic control performance of the controllers, we then wonder whether the controller has a good performance for the step reference signal. Fig.6 shows an enlarged step response of Fig.4. Controller \(K\) shows better and quicker transient response than \(K_{\infty}\). Controllers \(K_{\text{DIA}_1}\) and \(K_{\text{DIA}_2}\) show pretty quick response around 1.0[s] because of their high gain at the high frequency in Fig.3, however we must give careful attention for steady-state error with those both controllers. \(K_{\text{DIA}_1}\) and \(K_{\text{DIA}_2}\) leave steady-state errors because of their low gain at the low frequency in Fig.3. In the previous problem setup, the degrees of freedom in the design parameters are limited, so that it is difficult to shape a good controller frequency response[6].

Considering all the factors, we reached the conclusion that \(K\) has a better performance for all control requirements, and has a potential ability to be improved by using the degrees of freedom in the design parameters.

FIGURE 3: Frequency Response of the controller \(K\) with \(K_{\text{DIA}_1}\), \(K_{\text{DIA}_2}\), and \(K_{\infty}\).

FIGURE 4: Simulation of the controller \(K\) for \(K_{\text{DIA}_1}\), \(K_{\text{DIA}_2}\), and \(K_{\infty}\).

FIGURE 5: Initial state uncertainty response for \(K\), \(K_{\text{DIA}_1}\), \(K_{\text{DIA}_2}\), and \(K_{\infty}\).

FIGURE 6: Step response for \(K\), \(K_{\text{DIA}_1}\), \(K_{\text{DIA}_2}\), and \(K_{\infty}\).
CONCLUSION

In this paper, we formulated a generalized type of H_{∞} control problem which considers a mixed attenuation of disturbance and initial-state uncertainty in the infinite-horizon case, without the orthogonality assumptions. We applied an infinite horizon disturbance and initial state uncertainty attenuation control problem without the orthogonality assumptions to a magnetic suspension system, and evaluated the effectiveness of the proposed approach. Comparing the proposed controller with the standard H_{∞} controller and the other controllers based on previous results, we showed the property and effectiveness of the proposed mixed attenuation controller.

References

