センサネットワークシステムにおける マルチホップ通信を考慮した最適ネットワーク構築

前田 雅志 滑川 徹 (慶應義塾大学)

An Optimal Network Configuration of Sensor Network Systems Considering Multi-hop Communication

*M. Maeda and T. Namerikawa (Keio University)

Abstract– This paper deals with a network configuration problem considering estimation error, communication error and multi-hop communication in a sensor networked feedback system. Wireless sensor networks contain a lot of decentralized disposed sensor nodes that are connected wirelessly each other and consolidates informations. We proposes a network configuration algorithm considering limited communication range and using the proposed estimation algorithm that each node has only self-location information without a priori information. Then we rewrite the algorithm considering generalized limits of the communication range. Finally, the effectiveness of the proposed methods is verified by the experiments.

1 はじめに

ユビキタスネットワークと呼ばれるあらゆる通信環境にお いても利用できる社会の実現に向け研究がすすめられている. 現実的には障害物であったり他の信号による影響により厳し いものとなっているが、近年その基礎技術として小型の無線装 置が内蔵された複数のセンサノードを相互に無線結合し構築 されるセンサネットワークが注目されている.各センサノー ドは観測機能だけでなく演算機能も有しており、センサ同士 がネットワークを介して情報のやり取りを行うことによって、 防災や防犯、セキュリティ、医療・福祉など様々な分野で扱う ことができる.こうした応用例により社会・経済活動におけ る情報伝達技術の強化が期待されている.

しかし、無線結合されているためセンサノードは単体での 長時間の動作が求められ、さらに高い計算機能を付与すれば それに伴い電力消費が大きくなってしまう.一般的に使用す る電力はバッテリーから供給する必要があるので省電力化、 長寿命化を図る必要がある.そこで本論文ではネットワーク 構築のアルゴリズムを提案し、システム全体の省電力化、効 率化を図る.

センサネットワークシステムでは多くの先行研究が存在する. 文献 [1-2] では観測,通信を行うのに最適なセンサノードを選択し,その他をスリープ状態にするスケジューリング問題を用いたネットワーク構築を行なっている.

また, 文献 [3] ではセンサノード間で潜在的にランダムな 遅延や情報の欠落, データ破損が生じる場合について考えて いる. ここではセンサが直列につながれているか並列でつな がれているかも議論され, 各場合の誤差共分散行列を最小化 する. そして, 文献 [4-5] ではネットワークのスケジュール問 題より, 通信エネルギーの総和からネットワークの寿命につ いて考えられている. マルチホップ通信を考慮した問題とし ては文献 [6-13] が挙げられ, 文献 [6] でフュージョンセンタ に情報がネットワークを介して集約され, フィードバック制 御系を構成している. そしてシステムとして共通の状態推定 値を出力し, その推定誤差共分散行列についに関するリカッ チ方程式が正定な解を唯一解を持つ事を示している.

また, 文献 [10] では通信エネルギーを最小化する初期ネッ トワーク構築アルゴリズムを提案し, その後自身が情報を送 信するだけの端に存在するセンサノードへの経路を, 全体の ネットワークの部分ネットワークであると考え, それにより 最適なネットワークを導き出し, 誤差共分散の値を小さくす るために特定のノードをフュージョンセンタに接続する作業 を行っている. さらに文献 [12] では大規模システムの場合の通信エネル ギーを考慮した静的なネットワーク及び動的なネットワーク の構築アルゴリズムを提案しているが、ここまで各ノード間 やフュージョンセンタまでの距離を考慮しておらず、現実的 な問題への応用として通信半径が有限である場合について考 える事が出来ない.また、フュージョンセンタと各センサノー ドはあらかじめ他のノードの位置情報を持っており、その情 報を元にネットワークを構築している.さらに、推定誤差を 小さくするためにマルチホップ通信を用いてネットワークを 再構築しているのだが、その際最大通信半径を考慮しておら ず、全てのセンサノードは任意のセンサノード、またはフュー ジョンセンタに接続する事ができる.

そこで本論文では、文献 [12] で提案されたアルゴリズムに 着目し、より現実的な通信制約条件の下でのネットワーク構 築問題を扱う. 未知の場所においてセンシングをする際に, センサノードをランダムに配置した場合、ノード感の位置関 係の把握が困難であり、現実的な大規模システムにおいては ネットワークを構成する段階ではセンサノードは他の位置情 報を持っておらず、通信半径は内蔵するバッテリーに対応し 有限な値しか取れないため、事前情報を持たずに偏在する有 限な通信半径を持つセンサノードが初期のネットワークを構 築するためのアルゴリズムを提案し、その後ある限定した通 信半径において、文献 [12] で提案されていたアルゴリズムに 比べよりエネルギー効率のよいアルゴリズムを提案する. また、各センサノードが1ステップ時間で送信できる情報量 が等しいという条件下における推定アルゴリズムを用いて、 推定値の誤差共分散行列の対角要素の和である分散の大小関 係が、ネットワークの深さ \bar{h} の大小関係と一致する事を証明 する.最後に通信半径の関係式を一般化したアルゴリズムを 提案する.

2 問題設定

2.1 制御対象とセンサのモデル,ネットワーク構造

本論文では、1 台のフュージョンセンタ S_0 に対し N 台のセ ンサノード S_i , (i = 1, 2, ..., N) で構成される(ネットワー ク T として結合されているセンサネットワーク)システムに ついて考える.この時、制御対象は(1)式,センサの観測モデ ルを(2)式として表わす.

- $x_{k+1} = Ax_k + Bu_k + w_k \tag{1}$
 - $y_k^i = C_i x_k + v_k^i \tag{2}$
 - $u_k = K \hat{x}^i_{k|k} \tag{3}$

ここで, $x_k \in \mathbb{R}^n, u_k \in \mathbb{R}^m, y_k^i \in \mathbb{R}^{q_i}$ はそれぞれ状態, フュージョンセンタから与えられる制御入力, センサノード S_i の観測出力であり, $w_k \in \mathbb{R}^n, v_k^i \in \mathbb{R}^{q_i}$ はそれぞれシステ ム雑音, センサノード S_i の観測出力 y_k^i に含まれる観測雑音 である.

また, $K \in \mathbb{R}^{m \times n}$ はフィードバックゲインであり, 有限時間 LQR によって与えられる.

以上の (1)~(3) 式のモデルに次の仮定 1~3 を置く.

仮定 1

 $w_k, v_k = \left[(v_k^1)^T (v_k^2)^T \cdots (v_k^N)^T \right]^T \in \mathbb{R}, (q = \sum_i^N q_i)$ は以下を満たす平均 0のガウス性白色雑音である.

$$E\left\{ \begin{bmatrix} w_k \\ v_k^i \end{bmatrix} \begin{bmatrix} w_k^T & (v_k^i)^T \end{bmatrix} \right\} = \begin{bmatrix} Q & 0 \\ 0 & R_i \end{bmatrix}$$
(4)
$$E\{w_k x_0^T\} = 0, E\{v_k^i x_0^T\} = 0$$
(5)

ただし,
$$R_i = block \ diag\{R_1, R_2, \dots, R_N\} \in \mathbb{R}^{q \times q}$$
であり,

 $Q \in \mathbb{R}^{n \times n}, R_i \in \mathbb{R}^{q_i \times q_i}$ はそれぞれ既知の準正定行列, 既知の正定行列である.

仮定 2

(A,Q^{1/2})は可到達である.

仮定3

(C, A) は可検出である. ただし C は以下で定義される.

$$C = \begin{bmatrix} C_1 & C_2 & \dots & C_N \end{bmatrix}^T \tag{6}$$

加えて、本論文で扱うセンサノードとその通信制約に関して次の仮定4~6を置く.

仮定 4

各センサノードは最大半径 r_{max} と初期の通信半径 $r(= \frac{1}{2}r_{max})$ が決まっており, その通信半径は変更可能である.

仮定 5

センサノードはお互いの位置が分からない.

仮定 6

センサノード S_i は 1 ステップで他のセンサノード 1 台のみ に情報 $z_k^i \in \mathbb{R}^r$ を送信できる. さらにその際センサノード S_i はエネルギー $E_i \in \mathbb{R}_+$ を消費する. ただし, 受信する情報 z_k^i の数には制限がなく, ノード間の通信における遅延時間は ステップ時間以下である. また, センサノード間の通信エネ ルギーについて定義 1 を設ける.

定義 1

ネットワーク構築する際に,センサノードは自身を中心とし 円状に情報を発信する.また,接続先が決まったらノード間 の距離に通信半径を変更する.この時,通信エネルギーは以下 の式で与えられる.

$$E_{ij}^{t} = \varepsilon d_{ij}^{2} \quad , \quad E_{ij}^{r} = \varepsilon' \tag{7}$$

$$E_{ij} = E_{ij}^{\iota} + E_{ij}^{r} \tag{8}$$

ここで, E_{ij}^{t} はノードi, j間の送信エネルギーを表わし, E_{ij}^{r} はノードi, j間の受信エネルギーを表わしている. $\varepsilon, \varepsilon'$ は d_{ij} に依存する正の定数である.受信エネルギーはノード間の距離に依存せず,一定の値をとる.

以上のモデルで表現されるシステムについてネットワーク 構築の問題を考える.文献 [12] では $P_{\infty}^{\bar{h}} \leq \gamma$ の条件を満たす 深さ \bar{h} を決定するアルゴリズムを提案している.しかし実際 にこのアルゴリズムを使用するにあたりプリム法を用いてい るが,それは各センサノードが他のセンサの位置が分かる事 を前提とした強い制約条件を必要とするため,今回は別の手 法で深さ^{*h*}の最適なネットワーク構造を作ることにする. 以下ではまず初期のネットワークを更新するアルゴリズム を提案する.

初期ネットワークアルゴリズム

Step 1

N 台のセンサノードをランダムに配置,フュージョンセンタ 自身を GID = 0 に設定する. Step 2

フュージョンセンタの通信半径内に入っているセンサノード に自分の座標と *GID* = 1 を設定する.

Step 3

次に *GID* = 1 に設定されているセンサノードが通信半径内 に入っているセンサノードに自分の座標と *GID* = 2 を設定 する. Step 4

Step2,3を繰り返し通信半径内にGIDを持たないセンサノー

ドがなくなったら通信半径 r における深さ h を最小とする ネットワーク T での通信エネルギーを最小とするネットワー クが完成する.

最初に設定されたセンサノード, つまり自分との距離が一番近いセンサノードに接続する. また, GID は自分が設定されている値以上の値に更新されることはない.

ここで *GID* はグループ *ID* を表わしており, 深さが \bar{h} のセンサノード S_i が存在するグループを $GID(S_i)$ と表わす.

2.2 推定問題の設定

センサネットワークシステムでは(1)式で表現される対象 の状態を,雑音を含む観測出力から推定する必要がある.こ こで,より推定の精度を高くするためには通信遅延は小さい ほうが望ましいが,前述のように情報伝達に生じる遅延と通 信エネルギーにはトレードオフの関係があるため,推定精度 を維持しようとすると通信エネルギーが増加してしまう.そ こで,(1),(2)式のシステム,センサノードから構成されるセ ンサネットワークシステムに対して次の最適化問題1,2を定 義する.

問題 1

ネットワーク構造 T が与えられている時,以下の J が最小となる最適予測推定値 â_↓ を求めよ.

$$J = E\{(x_k - \hat{x}_k^-)^T (x_k - \hat{x}_k^-)\} = trP_k^-$$
(9)
問題 2

設計パラメータ $\gamma > 0$ が与えられた時,仮定 5, $J \le \gamma$ と以下を満たすネットワーク構造 T^* を求めよ.

$$T^{\star} = \arg \min_{T \in T_s} E_{all} \tag{10}$$

問題1において評価関数 J は推定精度の指標となり, これ を最小にする事が目的である.また, 問題2において許容可 能な推定精度の基準を設計パラメータ γ により与え, その中 でシステム全体の消費エネルギーを最小化するためのネット ワーク構造を選択する.ここで, \hat{x}_k^- は前の時刻k-1におい て推定された時刻kの推定値であり, P_k^- も同様の推定誤差 共分散の値である.また, T_s は構築可能な全てのネットワー ク構造を表わす.

2.3 情報の融合

情報融合アルゴリズムを実現するためには各センサノード から得られるデータのサイズが等しくなければならない.そ こで次元の異なる観測出力 y_k^i について次元を統一すること で各センサノードが送信する情報量を等しくし情報融合でき るようにする.本論文ではセンサノード S_i が情報を送信す るノードを $Par(S_i)$ と表現する.また有向木 T における S_i の深さを h_i , フュージョンセンタ S_0 から最も離れたセンサ ノードの深さを \bar{h} とそれぞれ定義する.

Fig. 1: Example

センサノードが受け取る信号

まずセンサノード S_i が $Par(S_i)$ に送信する情報 z_k^i を以下 とする.

$$z_k^i = C_i^T R_i^{-1} y_{k-\bar{h}-h_i}^i + \sum_{j \in N_i} z_{k-1}^j$$
(11)

ここでは1ステップ前(k-1)に受信した情報を加算して送 信する情報を r=n 次元に均一化している. 一方フュージョンセンタでは1ステップ前の情報ではなく現

時刻kで受信した情報の加算を行う.

• •

フュージョンセンタが受け取る信号

$$z_k = \sum_{j \in N_0} z_k^j = \sum_{j=1}^N C_j^T R_j^{-1} y_{k-\bar{h}-1}^j$$
(12)

 z_k に含まれる観測出力の時刻は最も離れたセンサノードの深さ \bar{h} に依存する. \bar{h} が大きくなるほど z_k に含まれる観測出力の時刻は古くなっていく.別の言い方をすれば中継ノードを1台介するごとに h_i が大きくなり情報 z_k^i の観測出力が1ステップ遅れることになる.

2.4 状態予測アルゴリズム

前節ではフュージョンセンタが時刻 k で情報 z_k を得るこ とを示した. z_k は過去の観測出力 $y_{k-\bar{h}+1}^i$ の情報を含んでい る.本節では情報 z_k を用いて制御対象の状態 x_k を推定す るアルゴリズムについて考える.この時 (1), (2) 式のセンサ ネットワークを介したフィードバック制御系における状態推 定について文献 [12] より以下の定理 1 が得られる.

定理1

(1), (2) 式のシステムとネットワーク構造が仮定 $3 \sim 6$ を満た すとする. この時, 問題 1 に対する解として予測推定値 \hat{x}_k^- が 以下の推定アルゴリズムにより与えられる.

$$\hat{x}_{\bar{k}} = A^{h-1} \hat{x}_{k-\bar{h}+1} + \bar{B}_{\bar{h}} \bar{u}_{k-\bar{h}+1} \tag{13}$$

$$\hat{x}_{k-\bar{h}+1} = \hat{x}_{k-\bar{h}+1}^{-} + P_{k-\bar{h}+1} \left(z_k - C^T R^{-1} C \hat{x}_{k-\bar{h}+1}^{-} \right) (14)$$

$$P^{-} = A^{\bar{h}-1} P_{k-\bar{h}-1} \left(A^{\bar{h}-1} \right)^T + C^{-} \bar{O} C^{T}$$
(15)

$$P_{k} = A \quad P_{k-\bar{h}+1}(A \quad) + G_{\bar{h}}QG_{\bar{h}} \tag{13}$$

$$P_{k-\bar{h}+1} = \left\{ \left(P_{k-\bar{h}+1}^{-} \right)^{-1} + C^{T} R^{-1} C^{T} \right\}^{-1}$$
(16)

ただし, $\bar{B}_{\bar{h}}, G_{\bar{h}}, \bar{Q} \in \mathbb{R}^{n(\bar{h}-1) imes n(\bar{h}-1)}$ は以下である.

$$\bar{B}_{\bar{h}} = \begin{bmatrix} B \ AB \ \cdots \ A^{\bar{h}-2}B \end{bmatrix}$$
(17)

$$G_{\bar{h}} = \left[I_n \ A \ \cdots \ A^{\bar{h}-2} \right] \tag{18}$$

$$\bar{Q} = block \ diag\{Q, Q, \dots, Q\}$$
 (19)

証明1 文献 [12] 参照.

2.5 予測推定誤差の分散とネットワーク構造の関係 本節では定理1より得られる予測推定誤差の分散 trP_k^- と ネットワーク構造の関係について考える.まず仮定4,5よ リ, $k \propto 0$ の時 (15) 式の代数リカッチ方程式は以下を満た す正定な唯一解 $P_k^{\overline{h}}$ を持つ.

$$P_{\infty}^{\bar{h}} = A^{\bar{h}-1} \left\{ \left(P_{\infty}^{\bar{h}} \right)^{-1} + C^{T} R^{-1} C \right\}^{-1} \left(A^{\bar{h}-1} \right)^{T} + G_{\bar{h}} \bar{Q} G_{\bar{h}}^{T} \quad (20)$$

(17) 式より推定誤差共分散行列 $P_{\infty}^{\bar{h}}$ はネットワーク構造 Tの深さ \bar{h} に依存することがわかる. この時以下の定理 2 が成立する.

定理 2

 $\bar{h} = \alpha, \beta, (\alpha > \beta)$ に対する (19) 式の解をそれぞれ $P_{\infty}^{\alpha}, P_{\infty}^{\beta}$ とする. この時, $P_{\infty}^{\alpha}, P_{\infty}^{\beta}$ は以下の関係を満たす.

$$trP_{\infty}^{\alpha} \ge trP_{\infty}^{\beta} \tag{21}$$

証明 2 まず $\bar{h} = \alpha, \beta$ に以下を満たす初期値 $P_0 > 0$ を与える.

$$P_0 = A(P_0^{-1} + C^T R^{-1} C)^{-1} A^T + Q$$
(22)

また、初期値を与えるときに以下の条件も成り立つとする.

$$x_0 = x_0^-, \quad P_0 = P_0^-$$
 (23)

$$\iff P_0^- = A((P_0^-)^{-1} + C^T R^{-1} C)^{-1} A^T + Q (24)$$

なおここで任意の $P_0 > 0$ に対する解 P_K が $P_0 = 0$ に対する解 P_K^* と一致し初期値に依存しないことは

$$P_0 \ge P_0^* = 0 \tag{25}$$

$$P_K > P_K^* \tag{26}$$

であることと、仮定 5 の下で (C, A) が可検出であるときリカッチ方程式の解が漸近安定となるために、推定誤差共分散行列 $\hat{P}_K \ge P_K$ となることから

$$\lim_{k \to \infty} P_K^* \le \lim_{k \to \infty} P_K \le \lim_{k \to \infty} \hat{P}_K = P \tag{27}$$

以上の結果より示される.よって (19) 式の解は初期値に依存 しない.

また,

$$P_{\alpha-1}^{-} = A^{\alpha-1} \{ (P_0^{-})^{-1} + C^T R^{-1} C \}^{-1} (A^{\alpha-1})^T + G_\alpha \bar{Q} G_\alpha^T$$
(28)

ここで下記の逆行列の補題を用いる.

$$(A + C^{T}B^{-1}C)^{-1} = A^{-1} - A^{-1}C^{T}(CA^{-1}C^{T} + B^{-1})^{-1}CA^{-1}$$
(29)

$$P_{\alpha-1}^{-1} = A^{\alpha-1} \{P_{0}^{-} - P_{0}^{-}C^{T}(CP_{0}^{-}C^{T} + R)^{-1}CP_{0}^{-}\}(A^{\alpha-1})^{T} + G_{\alpha}\bar{Q}G_{\alpha}^{T}$$
(30)

(27) 式に
$$P_0^- = A\{(P_0^-)^{-1} + C^T R^{-1} C\}^{-1} A^T + Q$$
を代入する.

$$P_{\alpha-1}^{-1} = A^{\alpha} \{ P_0^{-1} + C^T R^{-1} C \}^{-1} (A^{\alpha})^T - A^{\alpha-1} P_0^{-1} C^T (C P_0^{-1} C^T + R)^{-1} C P_0^{-1} (A^{\alpha-1})^T + G_{\alpha} \bar{Q} G_{\alpha}^T + A^{\alpha-1} Q (A^{\alpha-1})^T$$
(31)

(27)~(28) までの操作を繰り返すと最終的に

$$P_{\alpha-1}^{-} = \sum_{j=1}^{\infty} A^{j} Q (A^{j})^{T} - \sum_{i=\alpha-1}^{\infty} A^{i} P_{0}^{-} C^{T} (C P_{0}^{-} C^{T} + R)^{-1} C P_{0}^{-} (A^{i})^{T}$$
(32)

よって

$$P_{\alpha-1}^{-} - P_{\beta-1}^{-}$$

$$= \sum_{i=\beta-1}^{\alpha-2} A^{i} P_{0}^{-} C^{T} (CP_{0}^{-} C^{T} + R)^{-1} CP_{0}^{-} (A^{i})^{T} (33)$$

この (32) 式を変形すると (20) 式が得られる. そして同時に $k \to \infty$ で $P_{\infty}^{\alpha} \ge P_{\infty}^{\beta}$ の関係が成り立つことが示された. こ れにより定理 2 が証明された.

定理 2 より, \bar{h} が小さいほうがより予測推定誤差の分散が 小さくなることがわかる. \bar{h} は有向木 T の高さであり, これ はつまりセンサノード S_i からフュージョンセンタ S_0 間に存 在する中継ノードが少なければ推定誤差の分散が小さくなる ことを意味する. しかし, 一般に通信距離の増加は通信エネ ルギーの増加を招く. よって予測推定誤差の分散と通信エネ ルギーの間にはトレードオフの関係が存在する.

3 ネットワーク再構築

本章ではネットワークの最大の深さを *h* として決定した際 に、これに合わせてネットワークの再構築を行うためのアル ゴリズムを提案する.以下の操作を行うことでネットワーク の再構築を行う.

Step 5

最大の深さ \bar{h} が決まったら,センサノードを

 $\begin{array}{rcl} \mathcal{V}_1 &=& \{S_j | GID(S_j) > \bar{h} + 2\} \\ \mathcal{V}_2 &=& \{S_j | GID(S_j) = \bar{h} + 2\} \\ \mathcal{V}_3 &=& \{S_j | GID(S_j) = \bar{h} + 1\} \\ \mathcal{V}_4 &=& \{S_j | GID(S_j) = \bar{h}\} \\ \mathcal{V}_5 &=& \{S_j | GID(S_j) = \bar{h} - 1\} \\ \mathcal{V}_6 &=& \{S_j | GID(S_j) < \bar{h} - 1\} \end{array}$

という6つのグループに分ける.

Fig. 2: GID Setting in Step 5

Step 6

 $GID(S_i) = \bar{h} + 2$ のセンサノードが存在するとき、通信半径 を r_{max} とし、一番近い $GID(S_j) < \bar{h} + 1$ のセンサノードに 接続する. $GID(S_j) < \bar{h}$ と接続するときは自身のGIDを $GID(S_i) = GID(S_j) + 1$ とすればよい. $GID(S_j) = \bar{h}$ と接 続したときは、 $GID(S_j)$ のセンサノードの通信半径を r_{max} とし、一番近い \mathcal{V}_6 内の $GID(S_k) < \bar{h} - 1$ のセンサノードに 接続する. $CO時, GID(S_j)$ は $GID(S_j) = GID(S_k) + 1$, 自身は $GID(S_i) = GID(S_j) + 1$ に更新する.

Step 7

 $GID(S_i) = \bar{h} + 1$ のセンサノードが存在するとき, $GID(S_i)$ のセンサノードの通信半径を r_{max} とし一番近い $\mathcal{V}_5, \mathcal{V}_6$ 内の $GID(S_j) < \bar{h}$ のセンサノードに接続する.その後, 自身の GIDを $GID(S_i) = GID(S_j) + 1$ と更新する.

Step 8

 \mathcal{V}_1 内のセンサノード $GID(S_i)$ のセンサノード通信半径を r_{max} とし、一番近い $\mathcal{V}_5, \mathcal{V}_6$ 内の $GID(S_j) < \overline{h}$ のセンサノー ドが存在する場合、接続する.

以上の操作を Network Configuration Algorithm 1 とし てまとめると次のようになる.

Network Configuration Algorithm 1

 $1:\overline{GID}(S_i) = h$ のセンサノード S_i から半径 $r = \frac{1}{2}r_{max}$ 内のセンサノード S_j に以下の値を設定し接続する.

$$GID(S_j) = h + 1$$

2:初期のネットワーク T_0 が完成後, 以下の式を満たす深さ \bar{h} を計算する.

$$J = tr P_{\infty}^{h} \le \gamma$$

3:深さ h の広域木を構築するために 6 つのグループに分ける.

$$\begin{array}{rcl} \mathcal{V}_1 &=& \{S_j | GID(S_j) > \bar{h} + 2\}, \\ \mathcal{V}_2 &=& \{S_j | GID(S_j) = \bar{h} + 2\}, \\ \mathcal{V}_3 &=& \{S_j | GID(S_j) = \bar{h} + 1\}, \\ \mathcal{V}_4 &=& \{S_j | GID(S_j) = \bar{h}\}, \\ \mathcal{V}_5 &=& \{S_j | GID(S_j) = \bar{h} - 1\}, \\ \mathcal{V}_6 &=& \{S_j | GID(S_j) < \bar{h} - 1\}. \end{array}$$

 $4: Par(S_i), (S_i \in \mathcal{V}_2)$ を更新する. if \mathcal{V}_2 が空集合でない時

$$Par(S_i) := arg \min_{S_j \in \mathcal{V}_4, \mathcal{V}_5, \mathcal{V}_6} e(S_i, S_j)$$

$$E_{ij}^t := e(S_i, S_j)$$

$$if \quad Par(S_i) \in \mathcal{V}_5, \mathcal{V}_6$$

$$GID(S_i) := GID(S_j) + 1$$

$$end \quad if \\ if \quad Par(S_i) \in \mathcal{V}_4$$

$$Par(S_j) := arg \min_{S_k \in \mathcal{V}_6} e(S_j, S_k)$$

$$E_{jk}^t := e(S_j, S_k)$$

$$GID(S_j) := GID(S_k) + 1$$

$$GID(S_i) := GID(S_j) + 1$$

end if end if

 $5:Par(S_i), (S_i \in \mathcal{V}_3)$ を更新する.

 $ext{if}$ \mathcal{V}_3 が空集合でない時

$$Par(S_i) := arg \min_{S_j \in \mathcal{V}_5, \mathcal{V}_6} e(S_i, S_j)$$
$$E_{ij}^t := e(S_i, S_j)$$
$$GID(S_i) := GID(S_j) + 1$$

end if

end if

 $6:Par(S_i), (S_i \in \mathcal{V}_1)$ を更新する. if センサ半径 r_{max} 内に $GID(S_j) < \bar{h}$ のセンサ ノードがあった場合

$$\begin{aligned} Par(S_i) &: = arg \min_{S_j \in \mathcal{V}_5, \mathcal{V}_6} e(S_i, S_j) \\ E_{ij}^t &: = e(S_i, S_j) \\ GID(S_i) &: = GID(S_j) + 1 \end{aligned}$$

end if

7: return T

また、

 $[m] = n \qquad \Longleftrightarrow \qquad n \le m < n+1 \qquad (34)$

という式を満たす n を定義する.

これにより,m > 2の時でも成り立つようなアルゴリズムに 一般化する.ここで,m < 2について考えないのは、マルチホッ プできない状況が発生してしまうからである. グループの分 け方は $V_1, ..., V_6$ の6つと変わらないが、分ける条件式が変 化する.

以下に初期の通信半径を一般化した Network Configuration Algorithm 2 を示す. (Network Configuration Algorithm 2)

1: $\overline{GID(S_i)} = h$ のセンサノード S_i から半径 $r = \frac{1}{m}r_{max}$ 内のセンサノード S_j に以下の値を設定し接続する. $GID(S_j) = h + 1$

2:初期のネットワーク T_0 が完成後, 以下の式を満たす深さ \bar{h} を計算する. $J = trP_{\infty}^{\bar{h}} \leq \gamma$

$$\begin{array}{rcl} \mathcal{V}_{1} &=& \{S_{j}|h+n < GID(S_{j})\},\\ \mathcal{V}_{2} &=& \{S_{j}|GID(S_{j}) = \bar{h} + n\},\\ \mathcal{V}_{3} &=& \{S_{j}|\bar{h} < GID(S_{j}) \leq \bar{h} + n - 1\},\\ \mathcal{V}_{4} &=& \{S_{j}|GID(S_{j}) = \bar{h}\},\\ \mathcal{V}_{5} &=& \{S_{j}|GID(S_{j}) = \bar{h} - 1\},\\ \mathcal{V}_{6} &=& \{S_{j}|GID(S_{j}) < \bar{h} - 1\}. \end{array}$$

4: 5: } Network Configuration Algorithm 1 と同様 6:

7: return T

この Network Configuration Algorithm 2 について以下 の定理が成立する.

定理3

Network Configuration Algorithm 2 において半径 r を $r = \frac{1}{k} r_{max} \quad k \ge 2$ (35)

と一般化した Network Configuration Algorithm 2 において も最適なネットワークを得る. (証明略)

Fig. 3: GID Setting in Step8

4 マルチホップ通信用カルマンフィルタ

本章では仮定 6 の条件の下で推定精度の向上を図るために, 自身より 1 つ深い位置に存在するセンサノードの情報を用い て推定を行う.まず, 2 つのセンサ *i* と *j* は *d_{ij} < r* の時通信 可能となり

$$A_{ji}^{\eta} = \begin{cases} 1 & d_{ij} \le r \\ 0 & d_{ij} > r \end{cases}$$
(36)

という値を示す. この観測行列 A_{ji}^{η} を用いることで

$$\hat{x}_{k+1|k}^{jh} = A\hat{x}_{k|k}^{jh}$$
 (37)

$$\hat{x}_{k}^{jh} = \hat{x}_{k|k-1}^{0} + K_{k}^{jh} \{ y_{k}^{j} - C_{k}^{jh} \hat{x}_{k|k-1}^{0} \}$$
(38)

$$K_k^{jh} = P_{k|k-1}^0 C_k^{jhT} \{ C_k^{jh} P_{k|k-1}^0 C^{jhT} + R^{jh} \}^{-1}$$

$$= P_k^{jh} C_k^{jhT} (R^{jh})^{-1}$$

$$(39)$$

$$P_k^{jh} = \{ (P_{k|k-1}^0)^{-1} + C_k^{jhT} (R^{jh})^{-1} C_k^{jh} \}^{-1}$$
 (40)

$$P_{k|k}^{jh} = [(P_{k|k-1}^{0})^{-1} + H_k^{jhT} A_{ji}^{\eta} (R_k^{jh})^{-1} H_k^{jh}]^{-1}$$
(41)

という項が求められる. また, この時の H_k^{jh}, R_k はそれぞれ 以下で与えられる.

$$H_{k}^{jh} := \begin{bmatrix} C_{k}^{jh} \\ C_{k}^{0h+1} \\ C_{k}^{1h+1} \\ \vdots \\ C_{k}^{nh+1} \end{bmatrix}$$
(42)

$$R_k := \begin{bmatrix} A_{jj}^{\eta} R_k^{jh} & 0 & \dots & 0\\ 0 & A_{j0}^{\eta} R_k^{0h+1} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & A_{jn}^{\eta} R_k^{nh+1} \end{bmatrix}$$
(43)

以上より,状態推定値とカルマンゲインは以下の式で与えられる.

$$\hat{x}_{k|k}^{jh} = \hat{x}_{k|k-1}^{0} + K_k(y_k - H_k \hat{x}_{k|k-1})$$
(44)

$$K_k := P_{k|k}^{jh} H_k^{jhT} A^{\eta} (R_k^{jh})^{-1}$$
(45)

$$y_{k} := \begin{bmatrix} y_{k}^{jh} \\ y_{k}^{0h+1} \\ \vdots \\ y_{k}^{nh+1} \end{bmatrix}, \hat{x}_{k|k-1} := \begin{bmatrix} \hat{x}_{k|k-1}^{jh} \\ \hat{x}_{k|k-1}^{0h+1} \\ \vdots \\ \hat{x}_{k|k-1}^{nh+1} \end{bmatrix}$$
(46)

深さの項目についても考えることにより、自分の観測値に加 えて接続されている1つ深さの深いセンサノードの情報を用 いることで推定精度の向上を図り、より誤差を抑えた情報を フュージョンセンタに集める事を可能とする.

5 シミュレーションと実機による検証

本章では,提案手法の有効性について検証した結果を示す. 実機による検証は Fig.4 の環境で行った.今回の検証では平

Fig. 4: Experimental System

面上を移動する対象物の状態を周囲に展開したセンサを用いて観測・推定を行い、得られた状態推定値を制御入力としてプラントにフィードバックする.これにより任意の目標値まで 誘導させるというセンサネットワークを用いたナビゲーションシステムの実験を行った.

制御対象には仮想ビークル構造を導入した独立2輪駆動 ビークルを観測をターゲットとして用いる.2次元平面上に おいてビークルの絶対位置,速度を上空に設置されているカ メラにより取得した画像データより重心における位置情報と 姿勢角が計算される.カメラより送られてきた画像情報の処 理には画像処理ソフトの HALCON を使用する.

ここで制御対象となるビークルの初期位置を x_0 = $[1.5 \ 0.7]^T$ と設定し、通信半径を $r_{max} = 1.6$ としてまずネットワークを構築している. Fig.5 は従来法のプリム法を用いて、Fig.6 は通信半径を制限した提案手法を用いて構築したネットワークである. 送信エネルギーはそれぞれ $5.0053\varepsilon + 12\varepsilon'$ と $4.0731\varepsilon + 12\varepsilon'$ となり、 \bar{h} のセンサノードをマルチホップ 化させることにより、システム全体のエネルギーを小さくする事が出来た. Fig.7~8 はmの値を変化させた時でのネットワークを比較している.

シミュレーション結果と比較すると, Fig.9, 10 はそれぞれ ビークルの軌跡を表わしており, 共に原点に収束しているの が分かる.

Fig. 5: $Prim(\bar{h}=5)$

Fig. 6: Proposed $(\bar{h} = 5)$

6 おわりに

本論文ではまず、マルチホップ通信により情報を伝達する センサネットワークシステムの定式化を行った.次に,各セン サノードが事前情報を持たず自己位置情報のみ分かる状態で 偏在するセンサネットワークにおいて、最大通信半径が有限 の値であり,最大通信半径の半分以下に設定した初期通信半 径を用いた初期ネットワーク構築の方法を提案した.そして マルチホップ通信を用いて通信エネルギーの消費と推定誤差 を同時に限定的な条件下で最適化するネットワークシステム を提案した.次に、このような送信する情報量に制限のある センサネットワークにおける推定アルゴリズムを用いて,推 定値の推定誤差共分散行列が正定な唯一解を持つことを示し、 その対角要素の和である分散の大小関係が深さ ħの大小関係 と一致する事を従来方法と別の方法で証明した.そして、深 さ \bar{h} を基準として6つのグループに分け, \bar{h} のセンサノード をマルチホップ化することによるネットワーク構築アルゴリ ズムを提案し、限定的な条件下での準最適性を証明した. そ の後に初期の通信半径の式を一般化した場合のネットワーク 構築アルゴリズムを提案し、最適性を示した. これにより複 雑なネットワークの再構築を6つのグループに分けるという 形で表現することができるようになった. 最後に,提案した アルゴリズムの有効性をシミュレーション,実機検証により 示した.

参考文献

- M.J. Miller, N.H. Vaidya, "A mac protocol to reduce sensor network energy consumption using a wakeup radio", IEEE Trans. Mobile Comput., 2005, 4, (3), pp. 228-242
- N.A. Vasanthi, S. Annadurai, "Sleep schedule for fast and efficient control of parameters in wireless sensor-actor networks", First Int. Conf. on Communication System Software and Middleware, January 2006,
- 3) V. Gupta, A. F. Dana, J. P. Hespanha ,R. M. Murray and B. Hassibi," Data Transmission Over Networks for Estimation and Control,"IEEE Trasactions on Automatic Control, Vol. 54, No. 8, August 2009, pp.1807-1819.
- 4) Chen Y., Zhao Q., Krishnamurthy V., Djonin D.," Transmission scheduling for optimizing sensor network lifetime: A stochastic shortest path approach", IEEE Trans. Signal Process., 2007, 55, (5), pp. 2294-2309
- Lai C.-C., Ting C.-K., Ko R.-S.," An effective genetic algorithm to improve wireless sensor network lifetime for large-scale surveillance applications", IEEE Congress on Evolutionary Computation, September 2007, pp. 3531-3538
- 6) L. Shi, K. H. Johansson and R. M. Murray, "Change Sensor Topology When Needed, How to Efficient Use system Resource in Control and Estimation over Wireless Network, "Proc. of Conference on Decision & Control, 2007, pp. 5478-5485.
- 7) Z. Lin and Mihaela van der Schaar, "Autonomic and Distributed Joint Routing and Power Control for Delay-Sensitive Applications in Multi-Hop Wireless Networks," IEEE Transactions on wireless Communications, Vol. 10, No. 1, January 2011, pp.102-113.
- 8) Faruque, Jabed ; Helmy, Ahmed "TABS: Link Loss Tolerant Data Routing Protocol for Multi-hop Wireless Sensor Networks," IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, pp.11-18.
- 9) Y. Song, C. Zhang, Y. Fang and Z. Niu, "Energy-Conserving Scheduling in Multi-hop Wireless Networks with Time-Varying Channels," IEEE Communications Society ,March, 2010, pp.14-19.
- 10) L. Shi, A. Capponi, K.H. Johansson, R.M. Murray," Resource optimisation in a wireless sensor network with guaranteed estimator performance", IET Control Theory Appl., 2010, Vol. 4, Iss. 5, pp. 710-723.
- 11) D. Kominami, M. Sugano, M. Murata, T. Hatauchi and J. Machida, "Energy Saving in Intermittent Receiver-driven Multi-HopWireless Sensor Networks", 2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, pp.296-303.
- 12) T. Takeda and T. Namerikawa," Sensor Network Scheduling Algorithm Considering Estimation Error Variance and Communication Energy", 2010 IEEE International Conference on Control Applications Part of 2010 IEEE Multi-Conference on Systems and Control Yokohama, Japan, September 8-10, 2010