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Multiple Cooperative Bilateral Teleoperation with Time-Varying Delay

Nam Duc DO ∗, Yusuke YAMASHINA ∗, and Toru NAMERIKAWA ∗∗

Abstract : This paper deals with a passive-decomposition based control of bilateral teleoperation between a single master
robot and multiple cooperative slave robots with time varying delay. First, we decompose the dynamics of multiple slave
robots into two decoupled dynamics by using the passive-decomposition: the shape-system describing dynamics of the
cooperative works and the locked-system representing the overall behavior of the multiple slave robots. Second, we
propose a PD control method for bilateral teleoperation to guarantee asymptotic stability of the system with time varying
delay. Finally, experimental results show the effectiveness of the proposed teleoperation.
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1. Introduction

Teleoperation systems allow persons to extend their sense
and manipulation capabilities to remote places. In general, a
slave robot is controlled to do some real tasks at the remote
place by controll signals that are sent from a master side. Com-
munication channels are composed to connect the robots and
the remote environment. In bilateral control, contact informa-
tion is fed back to the master side when the salve robot interacts
with the remote environment, therefore the manipulation capa-
bility can be improved [1]. One absolutely unsolved problem of
the control of teleoperation systems is time delay in the com-
munication line. In some cases, the master and the slave are
coupled via a communication network (e.g Internet), the time
delay is incurred in the transmission of data between the master
and the slave sides. The delay may destabilize and deteriorate
the transparency of the teleoperation system. Therefore, it is
necessary to design a control law to guarantee stability of the
system under communication delays. The time delay is not only
constant but also variable in many cases.

Up to now, many successful control schemes have been pro-
posed for the teleoperation system with single master and sin-
gle slave (SMSS). However, studies on teleoperation systems
with multi robots are relatively rare. In [2]–[5] some control
methods were proposed for the system with multiple master and
multiple slave (MMMS). In this system, one human can control
one slave robot to perform a separated operation in a coopera-
tive task, thus the system may demand a large number of human
operators if the task requires many slave robots. In [6]–[9] the
single master and multiple slaves (SMMS) systems were con-
sidered, but the control methods were proposed only for the
motion coordination. Both MMMS and SMMS systems are ap-
plied for the tasks which need the cooperation of many slave
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robots, such as lifting heavy objects, assembly works, etc.
In the SMMS systems, there are one master robot and two or

more slave robots. One human has to operate all slave robots
at the same time by using only one master robot in a coop-
erative task. The control scheme for this system is not easy
especially in the case of movement and contact force of each
slave robot are of variety. A control algorithm of only one
master robot is required corresponding with the number of the
slave robots. To solve above difficulties, a method based on the
passive-decomposition is proposed as a technique for making
two or more slave robots cooperate in the SMMS system [4].
In this work, utilizing the passive-decomposition, the dynamics
of the two or more slave robots is decomposed into decoupled
systems while enforcing passivity. There are two concepts: the
shape-system instructs the dynamics of the cooperative work;
the locked-system abstracts the overall dynamics of the multi-
slave robots. To passivate the master-slave communication de-
lay, the scattering-based communication is utilized [10]. How-
ever in the work, neither alignment error between each slave
robot position nor force reflection of them is guaranteed. On
the other hand, in [11],[12] PD control was used without the
scattering conversion and the controller gains depend on the
maximum round-trip delay, where stability is guaranteed with
the communication delay.

In this paper, one control law is proposed, that is based on the
technique of [10],[11] for the SMMS system with time varying
delay in the communication line. This proposed control guar-
antees asymptotic stability. While in [10], scattering conver-
sion uses the PD control law with constant time delay in the
communication lines, by the proposed control law for the time
varying communication delay, we also achieve stability. In our
proposed control law, we use an individual gain for the differ-
ent structures of the master and the slaves. In the independent
design, a scaling power can be set at both sides of teleopera-
tion. In addition, the teleoperation achieves asymptotic stabil-
ity for any time varying communication delay, i.e., the master
and slave spacing errors achieve zero, and the static reflection
force is transferred when an object grasped by multiple slaves
contacts with the remote environment in this control law. In
experiments, two slave robots hold and carry the object to a de-
sired position, and experimental results show the effectiveness
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of our proposed control technique.
The paper is organized as follows. Problem formulation is

given in Section 2. In Section 3, the passive-decomposition
is presented and proposed control laws are designed. The sta-
bility analysis of the shape and locked systems are presented
in Section 4. Experimental results are presented in Section 5.
Section 6 contains some concluding remarks.

2. Problem Formulations
2.1 Dynamics of Teleoperation System

In this section, we show the dynamics of the SMMS sys-
tem that is composed of one master and N slave robots can be
expressed by a motion equation of a general robot arm. The
dynamics of the master with m-DOF and the dynamics of the i
slave with ni-DOF are shown as follows:{

Mm(qm)q̈m +Cm(qm, q̇m)q̇m = τm + JT
m(qm)Fop

Mi(qi)q̈i +Ci(qi, q̇i)q̇i = τi + JT
i (qi)Fi

(1)

where the subscript “m” denotes the master and the subscript
“i” denotes the order indexes of the slave, qm ∈ Rm×1, qi ∈ Rni×1

are the joint angle vectors, τm ∈ Rm×1, τi ∈ Rni×1 are the input
torque vectors, Fop ∈ Rm×1 is the operational force vector, Fi ∈
Rni×1 are the environmental force vectors, Mm ∈ Rm×m, Mi ∈
Rni×ni are the symmetric and positive definite inertia matrices,
Cm(qm, q̇m)q̇m ∈ Rm, Ci(qi, q̇i)q̇i ∈ Rni are the centripetal and
Coriolis torque vectors, Jm(qm) ∈ Rm×m, Ji(qi) ∈ Rni×ni are
Jacobian matrices. However, degrees of freedom of the slave
are assumed to be larger than ones of the master (ni ≥ m). The
Jacobian matrices satisfy the assumption below:

Assumption 1. The Jm and Ji are nonsingular matrices at all
times in operation.

In this paper, we propose a control law for different struc-
tural teleoperation. This control law of the system may be not
possible with some parameters in the joint space, therefore it is
useful to rewrite the master and slave robot dynamics directly
in the task space. The end-effector velocities ẋm ∈ Rm×1 and
ẋi ∈ Rni×1 in the task space relate to the joint velocity q̇m, q̇i as
follows:

ẋk(t) = Jk(qk)q̇k(t), k = m, i. (2)

by further differentiation of (2) as:

ẍk(t) = Jk(qk)q̈k(t) + J̇k(qk)q̇2
k(t), k = m, i. (3)

where ẍm ∈ Rm×1 and ẍi ∈ Rni×1 are the end-effector accelera-
tion vectors. Substituting (2) and 3 into (1), we can receive the
master and multiple slave robots dynamics in the task space as
follows:

M̃m(qm)ẍm + C̃m(qm, q̇m)ẋm = J−T
m τm + Fop (4)

M̃i(qi)ẍi + C̃i(qi, q̇i)ẋi = J−T
i τi + Fi (5)

where:

M̃k = J−T
k Mk J−1

k , C̃k = J−T
k {Ck − Mk J−1

k J̇k}J−1
k ,

(k = m, i)

xi is end-effector of each slave robot in Cartesian coordinate
system of multiple slaves. Let us denote the total degree of

freedom of the N slave robots by: n =
∑N

i ni, hence the group
dynamics of the N slave robots can be rewritten as follows:

M̃(q)ẍ + C̃(q, q̇)ẋ = τ + F (6)

where x = [xT
1 , . . . , x

T
N]T ∈ Rn, τ = [τT

1 J−T
1 , . . . , τ

T
N J−T

N ]T ∈ Rn,
F = [FT

1 , . . . , F
T
N]T ∈ Rn, and M̃(q) = diag[M̃1(q1), . . . ,

M̃N(qN)] ∈ Rn×n, C̃(q, q̇) = diag[C̃1(q1, q̇1), . . . , C̃N(qN , q̇N)] ∈
Rn×n are the inertia matrices and Coriolis matrices, respectively.
It is well known that the dynamics (4) and (5) have several fun-
damental properties under the Assumption 1 as follows:

Property 1. The inertia matrices M̃k(qk) (k = m, i) are symmet-
ric and positive definite and there exist some positive constants
mk1, mk2, ck in [13] such as:

0 < mk1 ≤ ‖ M̃k ‖≤ mk2

‖ C̃k ‖≤ ck ‖ ẋk ‖ (7)

Property 2. Consider an appropriate definition of the matrices

C̃k(qk, q̇k), the matrices Ñk =
˙̃Mk(qk) − 2C̃k(qk, q̇k) are skew

symmetric as in [13] such that:

zT Ñkz = 0 (k = m, i) (8)

where z ∈ Rn×1 is any vector.

Property 3. ẋk, ẍk (k = m, i) are bounded and ˙̃Mk, ˙̃Ck are also
bounded [14]

Communication delay is assumed as follows:

Assumption 2. Both time varying delay Tm(t) and Ts(t) are
continuously differentiable functions and possibly bounded as:

0 ≤ Th(t) ≤ T+h < ∞, |Ṫh(t)| < 1, h = m, s (9)

where T+h ∈ R are upper bounds of the communication delays.
Moreover, the upper bound of the round trip communication
delay T+ms = T+m + T+s is known preliminarily.

Assumption 3. The delays among all slave robots are very
small and they can be disregarded.

2.2 Control Objectives

In this paper, the SMMS system is shown in Fig. 1 with one
master and two slave robots. The cooperative slave robot is
similar to a dual-arm robot. The object is grasped to transport
to a specified place according to the instruction values of a con-
troller from the operator in the task space.

Control Objective 1. (Autonomous Grasping by Multiple
Slave Robots) In this work, the achievement of grasping: “a rel-
ative position of the end-effectors of the slave robots is shaped
in a certain specified form” means that the following condition
is accomplished:

xS = xd
S (10)

where xS ∈ Rn−m is the relative position of the end-effector of
the slaves, xd

S ∈ Rn−m is a desired position of xS .

Control Objective 2. (Movement of Grasped Object) When
the grasping is achieved, the center position between the end-
effector of the slave robots is same with the center position of
the grasped object, then the movement of the grasped object is
achieved as:
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Fig. 1 SMMS teleoperation system.

xL = xm (11)

where xL = αxL0 − C, xL0 ∈ Rm and xm are the center position
of the end-effectors and the grasped object, respectively; α ∈ R
is the position scale, C ∈ Rm is shown a translation value.

Control Objective 3. (Static Force Reflection) The teleopera-
tion with static Force Reflection is achieved as ẋ j = ẍ j = 0 ( j =
m, L) such that:

Fop = βFL (12)

where FL is the contact force of cooperative-slave, β > 0 ∈ R is
a positive scalar and it expresses a force scaling effect.

3. Control Design

In this section, to achieve above Control objectives, we pro-
pose a control law for the SMMS system.

3.1 Passive-Decomposition

First, based on the passive-decomposition, the dynamic of
multiple slave robots is decomposed into two decoupled sys-
tems: the shape-system describing “movement of the multiple
slaves with grasping object” and the locked-system describing
“movement of the multiple slaves according to the instruction
from the master”. Utilizing the passive-decomposition, the ve-
locity of multiple slave robots is rewritten with each system as
follows:

ẋ = S −1

[
ẋS

ẋL

]
(13)

where ẋS ∈ Rn−m and ẋL ∈ Rm are velocities of the shape-
system and the locked-system, respectively. S is the non-
singular decomposition matrix. The matrix S is also a positive
matrix of a decoupling shape and locked system. In the follow-
ing formula of S T M̃S −1, the non-diagonal terms are removed
as:

S T M̃S −1 =

[
MS 0
0 ML

]
(14)

where MS ∈ R(n−m)×(n−m), ML ∈ Rm×m are inertia matrices of
the shape-system and the locked-system, respectively. In the
fact that, ẋs and ẋL are defined for satisfying (14). In addition,
a local compensation of impedance shaping is necessary. The
reflection forces from environment relate with the control input
of slave dynamics of the shape-system and the locked-system
as follows:[

FS

FL

]
= S −T F,

[
τS

τL

]
= S −Tτ (15)

from above definitions, we define:

[
CS CS L

CLS CL

]
= S −T M̃

d
dt

(S −1) + S −T C̃S −1 (16)

note (6), the passive-decomposition form is written as:

MS (q)ẍS +CS (q, q̇)ẋS +CS L(q, q̇)ẋL = τS + FS (17)

ML(q)ẍL +CL(q, q̇)ẋL +CLS (q, q̇)ẋS = τL + FL (18)

where the subscript “S” denotes the shape-system and the sub-
script “L” denotes the locked-system. Above dynamic equa-
tions include friction terms CS L(q, q̇)ẋL and CLS (q, q̇)ẋS , how-
ever, ignore the remote control by the human, decoupling of
the shape-system and the locked-system is desired for the slave
that maybe autonomous grasping. Therefore, the decoupling
control inputs are given:

τS = CS L(q, q̇)ẋL + τ
′
S (19)

τL = CLS (q, q̇)ẋS + τ
′
L (20)

where τ
′
S , τ

′
L are new control inputs. Substituting (19), (20) into

(17), (18), we get:

MS (q)ẍS +CS (q, q̇)ẋS = τ
′
S + FS (21)

ML(q)ẍL +CL(q, q̇)ẋL = τ
′
L + FL (22)

hence, two above dynamics are decoupled.

Proposition 1. The dynamics (21), (22) are similar to the nor-
mal dynamics which relate to the Properties 1-3, thus some
properties of this SMMS system are given as follows:

Property 4. Mi(q) (i = S , L) is a positive symmetric matrix,
and there exist some constant parameters with the following
relationship as :

0 < mi1 ≤‖ Mi ‖≤ mi2

‖ Ci ‖≤ ci ‖ ẋi ‖ (23)

Property 5. Ṁi(q) − 2Ci(q, q̇) (i = S , L) is a skew-symmetric
matrix.

Property 6. ẋi, ẍi (i = S , L) are bounded and Ṁi, Ċi are also
bounded.

Proof. In the Properties 4 and 6, Mi,Ci (i = S , L) are defined
by (14) and (16), respectively, we can see from the Properties
1, 3 and the definition of S .

From the Property 5, we can get:[
ṀS − 2CS −2CS L

−2CLS ṀL − 2CL

]

=
d
dt

(S −T M̃S −1) − 2S −T M̃
d
dt

(S −1) − 2S −T C̃S −1 (24)

Using above skew-symmetric property of ˙̃M − 2C̃ and the
symmetric property of M̃, we can conclude that three terms at
the right side of (24) are the skew-symmetric matrices, thus
ṀS − 2CS and ṀL − 2CL should be skew-symmetric matrices
and equivalence. We also obtain:[

ṀS − 2CS −2CS L

−2CLS ṀL − 2CL

]
= −
[
ṀS − 2CS −2CS L

−2CLS ṀL − 2CL

]T
(25)

where CS L = −CT
LS . The proof of Proposition 1 is completed.

�
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Properties 4 ∼ 6 denote the feature of motion equation of
normal robots, otherwise, we can applied them for the control
law of abundance robots.

The following assumptions are from (1), (21), (22) and used
in next stability analysis section.

Assumption 4. All signals belong to L2 space. The velocities
ẋm, ẋL equal zero for t < 0 .

Assumption 5. The operator and the environment can be mod-
eled as passive systems, where the velocities ẋm, ẋL are sys-
tem inputs, the force Fop, FL are system outputs, respectively.
Moreover, these forces are bounded by the functions of the ve-
locities of the master and the locked-system.

3.2 Proposed Control Law

Concerning the control law of the shape-system (21), the
Control objective of this system is: xS = xd

S , then the position
tracking with this control law is shown as follows:

τ
′
S =MS {ẍd

S (t) − KS
d (ẋS − ẋd

S (t)) − KS
P (xS − xd

S (t))}
+CS ẋS − FS (26)

Substituting (26) into (21) we obtain the following closed-
loop systems:

ë + KS
d ė + KS

P e = 0,

e = xS − xd
S (27)

where KS
d , KS

P are positive definite diagonal gain matrices.

Remark 1. In the control law of this shape-system, informa-
tion of grasped object and two slave robots are necessary. Oth-
erwise, this proposed control of object grasping is only a po-
sition control, no force control in this case, although the force
FS is available in the torque input of the system. Therefore, the
grasping object is assumed to be soft enough to be kept by two
slave robots, then the Control objective 1 is also achieved.

Considering the coupling control of the locked-system and
the master. Note the Control objective: xL = xm, the control
law is defined as:

τ
′
L = −KL

d ẋL − KL
P(xL − xm(t − Tm(t))) (28)

τm = JT
m{−Km

d ẋm − Km
P (xm − xL(t − Ts(t)))} (29)

Substituting above control law into the locked-system (22)
and dynamic equation of the master (4), we obtain a closed-
loop system as follows:

ML(q)ẍL +CL(q, q̇)ẋL

= −KL
d ẋL − KL

P(xL − xm(t − Tm(t))) + FL (30)

M̃m(qm)ẍm + C̃m(qm, q̇m)ẋm

= −Km
d ẋm − Km

P (xm − xL(t − Ts(t))) + Fop (31)

where K j
P, K j

d ( j = m, L) are gains and defined as follows:{
Km

P = kmKP

KL
P = kLKP

,

{
Km

d = kmKd

KL
d = kLKd

(32)

where KP ∈ Rn×n, Kd ∈ Rn×n are positive definite diagonal con-
trol gains; km > 0, kL > 0 are constant gains of scalar that
designed separately on the master and the slave side.

4. Stability Analysis
4.1 Stability of Shape-System

The below theorem concerns the shape-system.

Theorem 1. Consider the closed-loop shape-system (27) and
Assumption 3, desired value of relative position of spaces be-
tween the slave robots is conversed as follows:

e = xS − xd
S → 0 as t→ ∞ (33)

Proof. The equation (27) can be rewritten as follows:[
ė
ë

]
= φ

[
e
ė

]
, φ =

[
0 I
−KS

P −KS
d

]
(34)

where KS
P , KS

d are positive diagonal matrices, eigenvalues of φ
are negative, therefore following errors of position and velocity
are achieved:

e = xS − xd
S → 0 as t→ ∞ (35)

ė = ẋS − ẋd
S → 0 as t→ ∞ (36)

it means the Control Objective 1 is achieved and the au-
tonomous grasping of multiple slaves is also achieved. �

4.2 Stability of Locked-System

The below theorem concerns the dynamics (30), (31).

Theorem 2. Consider the systems described by (30) and (31).
Then under Assumptions 1∼5, the position tracking error given
by xe is bounded; the velocities of the master and the coopera-
tive slaves ẋm, ẋL, respectively, are asymptotically converged to
origin. In a sense of matrix inequality, the control gain matrices
KP, Kd are chosen to satisfy below condition:

KP <
2

T+ms
Kd (37)

then the system is asymptotically stabilized.

Proof. The state vector of the locked-system is proposed as:

x(t) = [ẋT
m, ẋ

T
L , x

T
e ]T

where xe ∈ Rm×1 is the position error of master and the locked-
system: xe = xm− xL. We define a Lyapunov function candidate
for the system as follows:

V(x(t)) =k−1
m ẋT

m(t)M̃m ẋm(t) + k−1
L ẋT

L (t)MLẋL(t)

+ xT
e (t)KPxe(t) − 2k−1

L

∫ t

0
FT

L (ξ)ẋL(ξ)dξ

− 2k−1
m

∫ t

0
FT

op(ξ)ẋm(ξ)dξ (38)

where Mm, ML, KP are positive definite matrices, km, kL > 0.
Following the Assumption 5, the environment and the manip-
ulator are passive, then V(x(t)) is the positive function. The
derivative of above Lyapunov function along trajectories of the
system (30), (31) with concerning Properties 2 and 5 as:

V̇ = − 2ẋT
mKd ẋm + 2ẋT

mKP(xL(t − Ts(t)) − xL)

− 2ẋT
L Kd ẋL + 2ẋT

L KP(xm(t − Tm(t)) − xm) (39)
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applying Leibniz-Newton formula:

xi(t − Th(t)) − xi = −
∫ Th(t)

0
ẋh(t − ξ)dξ, (h = m, s)

(40)

substituting (40) into (39), we get:

V̇ = − 2ẋT
mKd ẋm − 2ẋT

mKP

∫ Ts(t)

0
ẋL(t − ξ)dξ

− 2ẋT
L Kd ẋL − 2ẋT

L KP

∫ Tm(t)

0
ẋm(t − ξ)dξ (41)

The second term at the right side of (41) is transformed as
follows:

−2ẋT
mKP

∫ Ts(t)

0
ẋL(t − ξ)dξ

= −
n∑

j=1

KP j2ẋm j

∫ Ts(t)

0
ẋL j(t − ξ)dξ (42)

where ẋm j, ẋL j, KP j are velocities of the master and slave (fol-
lowing the j axis) and positional control gains, respectively. In
(42), applying Young and Schawartz inequality for the term in
the right side, then note the inequality Ts ≤ T+s , we get:

−2ẋm j

∫ Ts(t)

0
ẋL j(t − ξ)dξ

≤ T+s ẋ2
m j +

1
T+s

{
Ts

∫ Ts(t)

0
ẋ2

L j(t − ξ)dξ
}

≤ T+s ẋ2
m j +

∫ T+s

0
ẋ2

L j(t − ξ)dξ (43)

Therefore, (42) is rewritten as follows:

−2ẋT
mKP

∫ Ts(t)

0
ẋL(t − ξ)dξ

≤
n∑

j=1

KP j

{
T+s ẋ2

m j +

∫ T+s

0
ẋ2

L j(t − ξ)dξ
}

= T+s ẋT
mKPẋm +

∫ T+s

0
ẋT

L (t − ξ)KPẋL(t − ξ)dξ (44)

Similar to (42), the fourth term in the right side can also be
rewritten. We receive below inequality from (41) as:

V̇ ≤ − 2ẋT
mKd ẋm − 2ẋLKd ẋL

+ T+s ẋT
mKPẋm +

∫ T+s

0
ẋT

L (t − ξ)KPẋL(t − ξ)dξ

+ T+m ẋT
L KPẋL +

∫ T+m

0
ẋT

m(t − ξ)KPẋm(t − ξ)dξ (45)

here, integrating both sides of above inequality [0, t], we get:∫ t

0
V̇dτ ≤ − 2

∫ t

0
ẋT

mKd ẋmdτ − 2
∫ t

0
ẋT

L Kd ẋLdτ

+

∫ t

0
T+s ẋT

mKPẋmdτ +
∫ t

0
T+m ẋT

L KPẋLdτ

+

∫ t

0

∫ T+s

0
ẋT

L (τ − ξ)KPẋL(τ − ξ)dξdτ

+

∫ t

0

∫ T+m

0
ẋT

m(τ − ξ)KPẋm(τ − ξ)dξdτ (46)

here, the fifth and sixth terms of right side in (46) can be trans-
formed by a simple calculation as follows:

∫ t

0

∫ T+s

0
ẋT

L (τ − ξ)KPẋL(τ − ξ)dξdτ

≤ T+s

∫ t

0
ẋT

L (τ)KPẋL(τ)dτ (47)∫ t

0

∫ T+m

0
ẋT

m(τ − ξ)KPẋm(τ − ξ)dξdτ

≤ T+m

∫ t

0
ẋT

m(τ)KPẋm(τ)dτ (48)

Substituting (47), (48) into (46), we obtain:∫ t

0
V̇dτ ≤ −

∫ t

0
ẋT

L {2Kd − T+msKP}ẋLdτ

−
∫ t

0
ẋT

m{2Kd − T+msKP}ẋmdτ (49)

and then, we receive:

V̇ ≤ −ẋT
L {2Kd − T+msKP}ẋL − ẋT

m{2Kd − T+msKP}ẋm (50)

From above inequality, we can choose the gains KP, Kd to
satisfy the condition (37), thus the derivative of the Lyapunov
function V̇ is negative semi-definite with denoting the Assump-
tion 4: ẋm, ẋL ∈ L2. To show the uniformly continuity of V̇ , we
consider the derivative of V̈ as follows:

V̈ ≤ −2ẍT
L {2Kd − T+msKP}ẋL − 2ẍT

m{2Kd − T+msKP}ẋm

(51)

The V̇ is uniformly continuity if the ẍm, ẍL, ẋm, ẋL are bounded.
Since V is lower-bounded by zero and V̇ is negative semi-
definite, we can conclude that the signals ẋm, ẋL and xe are
bounded. Moreover, applying Properties 1, 4 and the As-
sumption 5 for the dynamics of system (30), (31), we have
the signal ẍm, ẍL ∈ L∞. Thus, using lemma of [14], this im-
plies that limt→∞ ẋm = limt→∞ ẋL = 0, and using Properties
3, 6, we also can conclude

...
x m,

...
x L ∈ L∞. Hence, invok-

ing Barbalat’s lemma [15], ẍm, ẍL are uniformly continuous;
limt→∞ ẋm = limt→∞ ẋL = 0 and limt→∞ ẍm = limt→∞ ẍL = 0.
Therefore the system is asymptotic stable. �

In addition, two below corollaries that relate above theorem
as:

Corollary 1. Assume that the teleoperation system described
by (4), (22) satisfy the Theorem 2. When FL = 0, the master
and slaves spacing error achieve to zero as below:

xe = xm − xL → 0 as t → ∞ (52)

Proof. when FL = 0, equation (30) as:

KP(xL − xm(t − Tm(t))) = 0 (53)

Moreover, using Leibniz-Newton formula, following equa-
tion is achieved:

KP

{
xe −
∫ t

t−Tm

ẋmdt
}
= 0 (54)

where limt→∞ ẋm = 0, KP is a positive symmetric matrix,
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lim
t→∞ xe = 0 (55)

hence the position error of the master and the slave robots is to
zero. Thus, the Control Objective 2 is achieved. �

Corollary 2. Assume that the teleoperation system described
by (4), (22) satisfies Theorem 2. We obtain that the scaled re-
flection force from remote environment is accurately transmit-
ted to the slave robot side as follows:

Fop = −βFL, (β =
km

kL
) (56)

Proof. From Theorem 2, limt→∞ ẍm = limt→∞ ẍL =

limt→∞ ẋm = limt→∞ ẋL = 0, and concerning about (30), (31)
we can obtained:{

Fop = Km
P (xm − xL) = kmKP(xm − xL)

FL = KL
P(xL − xm) = −kLKP(xm − xL)

(57)

From equation (57), we get above expression (56)

Fop = −βFL, (β =
km

kL
)

we should choose the design parameters of scalar km, kL for
power scaling. Therefore, the static reflection force is achieved.

�

5. Evaluation by Control Experiments
5.1 Impedance Shaping

In this paper, the SMMS system was constructed with two
of 2-DOF serial-link arm of slave robots. Some parameters xS ,
xd

S , xL are defined as follows:

xS = x̄1 − x̄2 =

[
x1 − x2

y1 − y2

]
(58)

xd
S =

[
d
0

]
(59)

xL = α
x̄1 + x̄2 −C

2
=
α

2

[
x1 + x2 − c

y1 + y2

]
(60)

where C = [c 0]T , x̄1 = [x1 y1]T , x̄2 = [x2 y2]T ; from (58) and
(60) we get:[

ẋS

ẋL

]
=

[
˙̄x1 − ˙̄x2
α
2 ( ˙̄x1 + ˙̄x2)

]
=

[
I −I
α
2 I α

2 I

] [
˙̄x1
˙̄x2

]
(61)

We define the decomposition matrix S as follows:

S =

[
I −I
α
2 I α

2 I

]
(62)

However, the non-diagonal and coupling terms between the
shape-system and the Locked System still exist even by using
this decomposition matrix S . Thus, a linearization technique
with the impedance shaping is then introduced as:

τi = JT
i {MiH

−1(τ
′
i + Fi) − Fi +Ci ˙̄xi} (i = 1, 2) (63)

where τ
′
i is a new control input, H is an inertia matrix of a

robot. To satisfy (14), by a simple calculation, we can receive
the slaves 1 and 2 with same inertia matrix. Therefore, substi-
tuting M1 = M2 = H into slave dynamics (63), we obtain:

Fig. 2 Experimental setup. Fig. 3 Grasping object.[
H 0
0 H

] [
¨̄x1
¨̄x2

]
=

[
τ
′
1
τ
′
2

]
+

[
F1

F2

]
(64)

from (14), we get:

S −T MS −1 =

[ 1
2 I − 1

2 I
1
α

I 1
α

I

] [
H 0
0 H

] [ 1
2 I 1

α
I

− 1
2 I 1

α
I

]

=

[ 1
2 H 0
0 2

α2 H

]

=

[
MS 0
0 ML

]
(65)

In addition, since (14) is satisfied, it is easy to be seen that
the shape-system and the locked-system to be decoupling. If
the passive-decomposition is denoted by (64), we receive:[

MS 0
0 ML

] [
ẍS

ẍL

]
=

[
τ
′
S
τ
′
L

]
+

[
FS

FL

]
(66)

Therefore, by the definition of xS , xL mentioned above, the
Shape- System and the locked-system are decoupling by the
impedance shaping only.

5.2 Evaluation by Control Experiments

In this section, the effectiveness of the proposed methodol-
ogy is verified by the control experiments. In the experiments,
the SMMS system is constructed by one master with two DOFs
parallel link type arm and two slaves with two-two DOFs se-
ries link type arms. The experimental setup is shown in Fig. 2.
The cylindrical grasping object is used and shown in Fig. 3. We
can measure the operational force Fop and environment reflect-
ing force FL by using force sensors at the end-effector of each
robot. For implementation of the controllers and communica-
tion lines, we utilise a dSPACE digital control system (dSPACE
Inc.). All experiments have been done with the artificial time
varying communication delays and the sampling time is 1[ms]:{

Tm(t) = 0.1 sin t + 0.14 [s]
Ts(t) = 0.05 sin t + 0.1 [s]

(67)

From above equation, maximum round-trip delay is 0.39[s].
To satisfy (37) the controller gains are chosen as: KP =

diag(30, 35), Kd = diag(6, 7), km = 1, kL = 10, KS
P =

diag(400, 400), KS
d = diag(50, 50). Two kinds of experimen-

tal conditions are given as follows:

Case 1: Control the grasping object without any contact with
remote environment.
Case 2: Control the grasping object in contact with remote en-
vironment.

However, in actual experiments, it is difficult for entirety time
synchronization on master and slave side in the system configu-
ration. The data that received from master and the data of slave
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(a) X-position (b) Y-position

Fig. 4 Position of shape-system and xd
S (Case 1).

(a) X-position (b) Y-position

Fig. 5 Position of master and locked-system (Case 1).

(a) Shape-system (b) Locked-system

Fig. 6 Force (Case 1).

that measured from slave side need be compared, especially the
position data on the slave side. In addition, the force data is not
sent and received, then the measurement value is used. There-
fore, the gap of the time axis is caused for the force data to be
not same at the both sides of teleoperation. Moreover, there is
not sensor in the parallel link type arm of the master robot, thus
the value of human force Fop is presumed from the input torque
(Fop = J−T

m τm).
The experimental results of Case 1 are shown in Figs. 4–6.

Figure 4 shows time responses of end-effector position of slave
of the shape-system, Fig. 5 shows the time responses of end-
effector of the master of the locked-system. In Fig. 4, we can
conclude that the relative position between slaves following a
target trajectory with grasping object is achieved. And in Fig. 5,
we also conclude that the grasping object at the center position
of slaves is able to transported following the end-effector of
the master. The object is presumed to mix with closed links
of slaves. When grasping, the distance between slaves is nar-
rowed. However, this distance narrowed by each slave robot is
different when the object is held deflection. The force of the
shape-system and the locked-system in this case are shown in
Fig. 6. We can see that Fig. 6 (b) shows the force data when the
object is transferred without contact with the remote environ-
ment.

The experimental results of Case 2 are shown in Figs. 8–9.
The object comes and contacts with the remote environment
following vertical Y axis as shown in Fig. 7. Figure 8 shows
the time responses of end-effector position of the locked-system

Fig. 7 Experimental setup in Case 2.

(a) X-position (b) Y-position

Fig. 8 Position of master and locked-system (Case 2).

(a) X-force (b) Y-force

Fig. 9 Force of operator and scale locked-system (Case 2).

with the master, Fig. 9 shows the time responses of reflection
force from environment. In Fig. 9, the grasping object comes
and contacts with environment in case of the master and the
slave are stationary states. Moreover, the reflecting force is
transmitted in scale environment with Fop = −βFL (β = 1/10).

6. Conclusions
In this paper, we proposed a control method that guaran-

tees asymptotic stability of the SMMS system with time vary-
ing delay in the communication lines. The proposed control
law shows that the system is asymptotically stabilized under
the communication with time varying delay by using PD con-
trol and applying the passive-decomposition. This method re-
solves the dynamics of multiple slave systems as the shape-
system dynamic and the locked-system dynamic of the con-
trol law. Moreover, the proposed control law can be used to
achieve an autonomous object grasping by multiple slaves and
the transportation of the object by the control equipments. In
this work, the slaves can hold even if objects are unknown or
width-extendable as long as it can be held by the force control.
The force information on the grasped object is necessary for the
position control law to keep the object to be held.

Finally, several experimental results show the effectiveness
of the proposed control method.
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